Development of highly-integrated on-chip optical processor
Project/Area Number |
19K15037
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 21060:Electron device and electronic equipment-related
|
Research Institution | Hokkaido University (2020-2021) University of Hyogo (2019) |
Principal Investigator |
Sato Takanori 北海道大学, 情報科学研究院, 准教授 (60835809)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
|
Keywords | 光演算回路 / 光行列演算回路 / 光全加算器 / 光共振器 / 光導波路 / シリコンフォトニクス / 光集積回路 / 光導波路解析 / フォトニック結晶 |
Outline of Research at the Start |
既存の電子デバイス性能の限界を突破し得る光演算プロセッサの実現に向けて、超小型なシリコン光演算回路を設計・開発する。光回路を”超小型”にするために、フォトニック結晶とよばれる微細な人工周期構造を駆使したデバイス設計を行う。さらに、大量生産可能なCMOS互換プロセスを用いてデバイスを実際に試作し、光演算回路として動作可能であることを実験的に示す。
|
Outline of Final Research Achievements |
In this study, we investigated the miniaturization of optical matrix multipliers and optical full adders, which can be candidates for components of optical processors. Focusing on the tunable optical power divider and the tunable optical phase shifter included in these devices, we considered that both components can be miniaturized by using silicon ring resonators. Prototypes of the tunable optical power divider and the tunable optical phase shifter were fabricated and obtained characteristics were almost consistent with theoretical expectations. We clarified that the optical matrix multipliers and optical full adders based on the optical resonators enable higher-order processing, which is at least a factor of 10, compared with those based on 3dB power dividers and the phase shifter with straight waveguides.
|
Academic Significance and Societal Importance of the Research Achievements |
現在の電子デバイスの演算性能は既に限界に達しつつあり、革新的な技術の開発が望まれており、その突破口の1つとして、光信号を用いて演算を行う光演算プロセッサの実現に向けた検討が行われている。しかしながら、光回路の素子サイズは従来の電子回路よりも大きいため、光回路の集積度に課題があった。本研究では、光回路素子の構成に光共振器を導入することで、素子サイズの小型化、すなわち光回路の集積度の向上を目指しており、光演算プロセッサの実用化を大きく推し進めるものと期待される。
|
Report
(4 results)
Research Products
(11 results)