Project/Area Number |
19K15039
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 21060:Electron device and electronic equipment-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Holmes Mark 東京大学, 生産技術研究所, 准教授 (90760570)
|
Project Period (FY) |
2019-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2019: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 量子ドット / 半導体 / Single Photon Emission / III-Nitrides / Quantum Dots / Nanophotonics / III-nitride / quantum dot / single photon emitters / semiconductors |
Outline of Research at the Start |
This research project involves an investigation into a method to enhance the photon extraction rate from single quantum dots made from III-nitride semiconductors. These single photon emitters may be used in future quantum information processing applications, and hence are of great importance. Enhancement of the photon emission rate will be achieved by fabricating a structure to help direct photons into a selected region of space.
|
Outline of Final Research Achievements |
Photonic bullseye structures were designed and fabricated in GaN quantum dot samples. Analysis of the fabricated samples reveal that the single photon extraction efficiency was successfully increased by the bullseye structures. The highest extraction efficiency realized during in this study was measured to be >5% (for a lens with numerical aperture equal to 0.4, corresponding to a collection rate of 4.36MHz), which is much greater than the theoretical limit for an unprocessed GaN quantum dot emitting at the same wavelength.
|
Academic Significance and Societal Importance of the Research Achievements |
量子ドット単一光子源は、量子コンピューターや量子鍵配送、真乱数生成という技術の基本素子として有望であるが、発光の取り出し効率は低いという問題がある。本研究では、Photonic Bullseye構造を作成することによって、窒化ガリウム半導体でできた量子ドットからの光子取り出し効率を上昇させることに成功した。窒化ガリウム量子ドットは、高温動作も可能・幅広い波長帯で発光が可能であるため、将来の量子技術の発展には注目されている。将来のデバイスを実現するため、取り出し効率の高いものが必要となる。
|