Development of low-loss inversion channel diamond MOSFET using nitrogen doping
Project/Area Number |
19K15042
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 21060:Electron device and electronic equipment-related
|
Research Institution | Kanazawa University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
|
Keywords | ダイヤモンド / MOSFET / パワーデバイス / MOS / 反転層 / 高周波 |
Outline of Research at the Start |
ダイヤモンドは、バルク移動度、絶縁破壊電界等の優れた物性を持っていることが知られている。一方で新しい半導体であるがゆえに、デバイス応用は進んでいない。申請者は世界に先駆け、リンドープn型ダイヤモンドを用いた反転層MOSFETの作製、動作に成功した。しかし、そのチャネル移動度はバルク移動度に比べ、非常に低い値に留まっている。本研究では、申請者が独自に開発を進めてきた不純物濃度と平坦性の制御に優れた窒素ドーピング技術を導入し、MOS構造における半導体の不純物濃度や表面ラフネスが、反転層ダイヤモンドMOSFETの低いチャネル移動度の原因である界面準位やキャリア散乱に与える要因を科学的に明らかにする。
|
Outline of Final Research Achievements |
Diamond has excellent physical properties. However, the device applications have not progressed because many physics that cannot be understood remain. In this study, we investigated the effects of impurity concentration and surface roughness in diamond on device characteristics to understand the interface states and carrier scattering that cause low field-effect mobility in the inversion channel MOSFET, which was realized for the first time in the world. As a result, we have achieved 50 cm^2/Vs, which is about twice as good as the conventional mobility, although there is still an issue in reducing the nitrogen concentration in body of MOSFETs. In addition, by reducing the surface roughness of the boron-doped p-type diamond, a low interface state density of less than 10^12 cm^-2eV^-1 was achieved in the MOS capacitors.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究によって確立しつつある窒素ドーピング技術は、本研究対象とするMOSFET以外のパワーデバイスにおけるドリフト層や素子分離層の形成技術にとどまらず、量子デバイス応用が期待される窒素と空孔との複合欠陥であるNVセンタの精密形成のコア技術となると考えられる。今後も継続して研究していくことにより、SiCやGaNで実現できない高いチャネル移動度を達成するだけではなく、すべてのダイヤモンドデバイスの性能向上に寄与したい。
|
Report
(3 results)
Research Products
(10 results)
-
-
-
[Journal Article] Energy distribution of Al2O3/diamond interface states characterized by high temperature capacitance-voltage method2020
Author(s)
Xufang Zhang, Tsubasa Matsumoto, Ukyo Sakurai, Toshiharu Makino, Masahiko Ogura, Satoshi Yamasaki, Mitsuru Sometani, Dai Okamoto, Hiroshi Yano, Noriyuki Iwamuro, Takao Inokuma, and Norio Tokuda
-
Journal Title
CARBON
Volume: 168
Pages: 659-664
DOI
Related Report
Peer Reviewed / Open Access
-
-
-
-
-
[Presentation] Recent progress for inversion channel mobility improvement in diamond MOSFETs2019
Author(s)
T.Matsumoto, U.Sakurai, T.Yamakawa, H.Kato, T.Makino, M.Ogura, D.Takeuchi, S.Yamasaki, T.Inokuma, N.Tokuda,
Organizer
The 9th Asia-Pacific Workshop on Widegap Semiconductors (APWS2019)
Related Report
Int'l Joint Research / Invited
-
-