Clarification of Structural Concepts for Three-Dimensionally Twisted Origami Deployable Space Structures and Exploration of Methods for Constructing Three-Dimensional Modular Structures
Project/Area Number |
19K15208
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 24010:Aerospace engineering-related
|
Research Institution | Shizuoka University |
Principal Investigator |
ARITA Shoko 静岡大学, 工学部, 助教 (50800629)
|
Project Period (FY) |
2020-02-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 宇宙機 / 展開構造物 / 3次元展開構造 / 立体ねじり折り / 宇宙機構造物 |
Outline of Research at the Start |
Jackson Cubeなどの多角柱折紙を捩じることで展開・収納する折紙構造(立体ねじり折り)を軽量・高剛性な宇宙構造物としての設計に繋げるために,立体ねじり折り展開構造物を板バネとヒンジで構成し,可展開条件・載荷時の応力分布・変形形状を,解析および実験により調査し,変形メカニズムと確実性の高い展開のための変形制御方法を推定する.また,大型宇宙構造物の構築に有用なモジュラー構造へ利用可能な,立体ねじり折りを規則的に繋ぎ合わせたモジュラー構造の生成ルールの数学モデルを構築する.
|
Outline of Final Research Achievements |
In order to enable the space utilization of deployable structures based on three-dimensional twisted origami, research on their fundamental structure and application to spacecraft was conducted. As a result, through analysis and experiments using cube-shaped twisted origami structures, the structural characteristics, deformation mechanisms, and control parameters during deployment were clarified. Additionally, we proposed a structural model for modular structures. Regarding the modular structures, we demonstrated their feasibility in terms of construction and rigidity when applied to magnetic sails.
|
Academic Significance and Societal Importance of the Research Achievements |
宇宙大型構造物の構築と維持において革新的な手法であるモジュラー構造物への適用や,近年急増しているキューブサットへの搭載が容易な,立方体形状のねじり折り構造物の設計例を,宇宙ミッションとともに示したことに学術的意義がある.また,数学や工学の分野を含めた先行研究の中でも,展開中の変形について構造的特徴を明らかにしたことに学術的意義がある.
|
Report
(4 results)
Research Products
(8 results)