Optimization of doping scheme for highly-doped solid electrolytes bases on first-principles configurational sampling
Project/Area Number |
19K15287
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 26020:Inorganic materials and properties-related
|
Research Institution | Yamagata University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 第一原理計算 / 熱力学 / ジルコン酸バリウム / 機械学習 / 燃料電池 / 固体電解質 / 統計熱力学 / イオン伝導体 / セラミックス / レプリカ交換モンテカルロ法 / ニューラルネットワーク / ドーピング / BaZrO3 / 拡張アンサンブル法 |
Outline of Research at the Start |
燃料電池や全固体リチウム電池などの次世代電気化学デバイスの実用化のため、高性能な固体電解質の開発は急務である。本研究では、固体電解質中の原子の並びを計算機の中で再現し、その性能の微視的起源を明らかにすることで、材料設計のための指針を得ることを目的とする。具体的には、統計物理学の分野で実績を重ねてきたレプリカ交換法などのサンプリング手法を第一原理計算と組み合わせることで固体電解質の膨大な自由度に対応した計算を行う。プロトン伝導体として有望視されるBaZrO3 を題材に、イオン伝導性を最大化するための最適なドーピングスキームを提案し、材料開発を飛躍的に加速する。
|
Outline of Final Research Achievements |
The development of solid electrolytes with high ion conductivity is urgently needed for the practical application of next-generation energy conversion devices such as fuel cells and all-solid-state batteries. In many solid electrolytes, ion carriers are introduced by doping impurities into ceramic-based materials, but in most cases the conductivity decreases as the impurity concentration is increased beyond a certain level. In this study, a large-scale simulation study based on the principles of quantum mechanics and thermodynamics was performed to clarify the mechanism for such phenomena. More concretely, we considered barium zirconate, a promising electrolyte material for medium-temperature solid oxide fuel cells, and analyzed the distribution of various impurities in the material and how the ionic conductivity is determined based on this distribution.
|
Academic Significance and Societal Importance of the Research Achievements |
水素を燃料として発電する燃料電池は、次世代型のクリーンエネルギーデバイスとして有望視されている。すでに製品化されているものもあるが、主にコストや耐久性の問題から広く用いられるには至っていない。本研究成果は、高性能化、低コスト化が見込める中温(400℃)動作型燃料電池を実現する上で不可欠な固体電解質の開発に資するものである。また、より基礎学術的観点から述べると、多元素から構成される複合酸化物材料中の原子配置の材料合成条件に応じた予測、およびその結果を使った物性予測を可能にした先駆的な研究である。
|
Report
(5 results)
Research Products
(24 results)