Project/Area Number |
19K15348
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 27020:Chemical reaction and process system engineering-related
|
Research Institution | Tohoku University |
Principal Investigator |
Seong Gimyeong 東北大学, 未来科学技術共同研究センター, 助教 (30747259)
|
Project Period (FY) |
2019-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2019: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | 超臨界水 / ナノ / 触媒 / 金属 / 合成 / 非平衡 / 熱力学 / 反応速度 / metal / nanoparticle / supercritical / flow reactor / EOS / hydrogen / Thermodynamics / kinetics / fugacity / functional nanomaterials / material synthesis |
Outline of Research at the Start |
For the synthesis of nano-sized metals, it is necessary to inhibit secondary oxidation at the particle surface so that in-situ modification is essential. Supercritical water can provide a homogenous reaction condition suitable for this purpose. It is essential to balance the chemical potentials between metal ions, water, a reducing agent, and modifiers. Therefore, this research aims to establish the fundamentals for synthesis and in-situ modification of metal nanoparticles via thermodynamic and kinetic viewpoints and propose a new, economical and environmentally benign synthesis process.
|
Outline of Final Research Achievements |
In this study, to minimize the use of organic solvents, metal nanoparticles are synthesized using supercritical water with a flow-type reactor. Hydrogen is difficult to dissolve in water, but it can dissolve in high temperature and high-pressure water. The reducing potential of hydrogen in high-temperature and high-pressure water was estimated using the equation of state and fed back to nanoparticle synthesis. Here, a flow-type reactor with a short heating process and reaction time is applied. The operation parameters such as oxide concentration and size were obtained. The entire reaction mechanism that is necessary for designing the metal nanoparticle synthesis process was understood.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の学術的意義は、超臨界水での水素の還元ポテンシャルを求め、通常還元しにくい金属種を還元できるようにすることにある。プロセスの観点から見ると非平衡反応系は酸化物の初期生成を抑制し、金属の還元をより容易にすることができる。従って、これらの技術が産業化につながるのであれば、より環境に優しい方法で、金属ナノ粒子を大量に生産することができるので社会的意義は大きいと考えられる。
|