Project/Area Number |
19K15454
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 30010:Crystal engineering-related
|
Research Institution | National Institute of Advanced Industrial Science and Technology (2020) Institute of Physical and Chemical Research (2019) |
Principal Investigator |
Le ThuHacHuong 国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 産総研特別研究員 (60752144)
|
Project Period (FY) |
2019-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
|
Keywords | キラルメタマテリアル / 螺旋ナノ構造 / 光のキラリティーの制御 / キラル光メタマテリアル / 螺旋状ナノ構造体 / 光のキラリティの制御 / キラル分子検出 / 光のキラリティ / 立体ナノ構造加工法 / 残留応力 |
Outline of Research at the Start |
本研究では,可視から近中赤外の域帯で動作できるキラル光メタマテリアルの実現に向けて,構造体の寸法と配列・配向等が精密かつ自在に制御できる螺旋状構造体の作製法を開発し,得られる構造による光キラリティの制御とその応用としてキラル分子の検出の実証に挑む.特に,直径の数百nm~数μmまでの螺旋状構造の形成かつ光学特性制御という観点からどれだけ寸法の制御,均一な構造が制御できるかの極限を追求する.得られる構造の光学特性及び構造とキラル分子との相互作用を解明することを通して,新たなキラル分子検出法を開発する.本研究の成果はイメージングやセキュリティ,光通信,光情報処理技術への応用にも期待できる.
|
Outline of Final Research Achievements |
Controlling the chirality of photon by using chiral metamaterials enables a number of unprecedented applications from integrated photonics to life science. Among the chiral metamaterials developed so far, helical structures are expected to exhibit very high optical chirality over a large volume. However, fabricating helices with responses at optical frequencies is still very challenging, since structures must have geometrical features comparable with the wavelength of interest. Here, we proposed a novel method to fabricate helices by exploiting the stress-driven self-folding of metal thin film, and demonstrated helical structures of ~100 nm in diameters. The plasmon resonance and chiro-optical effects in the near- and mid-IR range have been observed. The greatest advantage of our technique is that the helices can be formed directly from two-dimensional structures through a programmable self-assembly process. Our method pave the way towards the exploration of chiral photonic devices.
|
Academic Significance and Societal Importance of the Research Achievements |
開発した手法は従来のトップダウン型ナノ加工技術で作製された平面構造を立体的螺旋状構造体に自己変形させる,自己形成的なプロセスでありながらも,メタマテリアルの動作波長を決める螺旋構造の寸法(直径やピッチ,螺旋ステップ数等)と光のキラリティー制御性能を決める螺旋構造の周期・配列・配向を精密に制御できる全く新しい立体構造加工技術である.特に光帯域で作動する螺旋構造及び巨大なキラルリティーを持つ近接場の実現は,新たな分光分析法技術や新妙な光学素子・光情報プロセシング技術の開拓に繋げると期待できる.また大面積に亘り高速かつ低コストでの加工できる点においても産業展開に大きな意義をなす.
|