Creation of cell-like nanomaterials based on dendrimer and development of concerted functions of their assembly
Project/Area Number |
19K15583
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 34010:Inorganic/coordination chemistry-related
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2019: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | デンドリマー / 金属錯体 / 有機-無機複合体 / 自己組織化 / 超分子 / 金 / 銀 / 銅 / トリフェニルメチリウム / インジウム / スズ / ホスト-ゲスト錯体 / 細胞型ナノ物質 |
Outline of Research at the Start |
本研究では、樹状高分子であるデンドリマー分子が持つ特異なナノ空間を利用して、空間内部に多数の機能性分子を集積・配列させた超分子「細胞型ナノ物質」を創成する。更に、この超分子を構造単位とした新たな物質「細胞型ナノ物質集合体」を組み上げる。 「異なる役割を持つ細胞が集合することで複雑な機能を実現する」という生体の様式に着目し、この構造体を利用したこれまでにない機能性材料の提案・実証を行う。
|
Outline of Final Research Achievements |
In this study, by using a 4th generation dendrimer with multiple Lewis basic imine units as a host material, multimetallic multinuclear complexes accumulating various Lewis acidic metal salts as guest materials were utilized as a model of "cell-type nanomaterial". The basicity of imines was designed to be stronger for inner imines in the dendrimer molecule, and the acidity of metal salts was modified by controlling oxidation number or counter anions. As a result, multiple metal elements were co-accumulated and formed multimetallic multinuclear complexes with various types of conformations such as normal, inverted, nested, and inverted-nested types in the dendrimer. In conclusion, a new technique for self-assemling and organizing a desired guest molecule at a desired position in a host material has been developed successfully.
|
Academic Significance and Societal Importance of the Research Achievements |
天然の光合成系や酵素などの高効率・高選択的な反応は、たんぱく質中の機能性分子の高度な自己配列・配向により実現されているが、このような複雑なナノ空間制御は人工的に構築・模倣することが困難とされている。本研究では、分子の自己組織化挙動のみを利用して、ホスト分子内の所望の位置に所望のゲスト分子を自在集積させる技術の開発に初めて成功した。この技術を応用することで、ゲスト分子の高度な自己配列・配向によって初めて生み出される特異な機能、超交換相互作用・光エネルギー移動・多段階レドックス等の化学現象を容易に発現させることが可能になるため、今後、新奇超分子機能性材料の開拓に向けた足掛かりになると考えられる。
|
Report
(3 results)
Research Products
(45 results)