Electrochemical study on solar water splitting reaction at the photoelectrode/electrolyte interface
Project/Area Number |
19K15670
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 36020:Energy-related chemistry
|
Research Institution | University of Miyazaki (2021) The University of Tokyo (2019-2020) |
Principal Investigator |
Higashi Tomohiro 宮崎大学, キャリアマネジメント推進機構, 助教 (80762088)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 光電極 / 水分解 / 光触媒 / エネルギー変換 / 光電気化学 / 電気分析化学 / 固液界面 / 表面修飾 |
Outline of Research at the Start |
太陽光エネルギーを輸送・貯蔵が可能な化学エネルギーへ変換する過程の一つに、半導体光電極を用いた光電気化学的水分解による水素生成がある。この水分解反応の効率をさらに向上させるためには、反応の舞台である光電極/水溶液からなる固液界面の設計が重要である。 本研究では、固液界面での水分子や共存電解質イオンの挙動を明らかにし、電子と正孔の移動過程を精査することで固液界面での特異な現象に関する知見と理解を深め、それを界面の設計戦略に反映させることで、水分解反応の高効率化を狙う。
|
Outline of Final Research Achievements |
This study investigated the photoelectrochemical (PEC) water splitting reaction on the Ta3N5-based thin-film photoelectrodes prepared on the double-side polished quartz insulating substrate. The developed Ta3N5 thin-film on quartz (Ta3N5/SiO2) shows the efficient water splitting reaction under simulated sunlight (AM 1.5G, 100 mW cm-2) by its own electrical conductivity even without insertion of the transparent conductive layer. The optical and electrical properties of Ta3N5 were investigated to describe the efficiency of photoelectrochemical water splitting as a function of light transmittance. The impact of the cocatalyst such as NiFeOx and NiFeCoOx loaded on Ta3N5/SiO2 photoelectrodes upon the water splitting reaction was evaluated using the results of PEC measurements, UV-vis transmission spectroscopy, and Hall effect measurements. The design of the photoelectrode/electrolyte interface allows us to achieve an efficient PEC water splitting device.
|
Academic Significance and Societal Importance of the Research Achievements |
半導体光電極を利用した光電気化学水分解反応は、光と水のみから水素と酸素を生成できる。低環境負荷で持続可能な水素社会の実現に向けた有望な太陽光エネルギーの変換技術であると考えられる。この光電気化学水分解における反応の舞台は、光電極/助触媒/水溶液からなる固液界面である。この固液界面に関する理解を深化し、高い効率で水分解反応を実現することが求められる。本研究では、半導体光電極上に担持した助触媒が与える水分解反応の効率について精査した結果、光吸収と光透過率および助触媒の担持条件の最適化によって、高い効率で水を水素と酸素に分解することができた。
|
Report
(4 results)
Research Products
(10 results)