Project/Area Number |
19K15879
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 40010:Forest science-related
|
Research Institution | Forest Research and Management Organization |
Principal Investigator |
Mori Taiki 国立研究開発法人森林研究・整備機構, 森林総合研究所, 主任研究員 等 (90749095)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 有機物分解 / 気候変動 / 機械学習 / ティーバッグ法 / ティーバッグインデックス / 炭素循環 / ティーバッグ / ランダムフォレスト / 割り箸 / マッピング / 広域評価 |
Outline of Research at the Start |
森林において、落葉落枝等の堆積有機物(以下リター)がどれほどの速度で分解するのかについては、これまで十分に明らかにされてこなかった。その理由のひとつに、実験用の均質なリターを大量に準備するのが困難であった事が挙げられる。本研究は、均質な標準物質としてティーバッグ・割り箸を利用することで、大量の分解速度データの取得を可能とする。得られた大量のデータを、近年発達している機械学習を利用して解析し、日本全国のリター分解速度のマップを作成する。
|
Outline of Final Research Achievements |
A prediction model for tea bag decomposition rate was established using the random forest method. Additionally, a modification was proposed to improve the prediction accuracy of the tea bag index (TBI) approach, which is a standard method for assessing litter decomposition. These contributions help to improve the robustness of the impact assessment of soil organic matter decomposition under climate change. Furthermore, we accumulated basic data on the effect of soil water on the decomposition rate of tea bags, revealing that the effect of soil moisture on tea bag decomposition rate is nonlinear. We also demonstrated through field fertilization experiments that carbon addition accelerates tea bag decomposition more than nutrient addition.
|
Academic Significance and Societal Importance of the Research Achievements |
ランダムフォレスト法によるティーバッグ分解速度予測モデルを作成したところ、平均気温、降水量、日射量、相対湿度が上昇するほど、また、標高、傾斜、Topographic Position Indexが低下するほどティーバッグの分解が速くなるという従来の知見と調和的な結果が得られ、機械学習によるリター分解速度予測マップ作成が十分可能であることが明らかになった。これは炭素排出量の算定方法改善に貢献する。
|