Understanding of reactive nitrogen species-dependent signal transduction in yeast by comprehensive and quantitative analysis methods
Project/Area Number |
19K16129
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 44010:Cell biology-related
|
Research Institution | Nara Institute of Science and Technology |
Principal Investigator |
Nasuno Ryo 奈良先端科学技術大学院大学, 先端科学技術研究科, 助教 (90708116)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 翻訳後修飾 / 一酸化窒素 / 酵母 / 代謝 / ニトロ化 / グルタチオン化 / S-グルタチオン化 / 代謝制御 / S-ニトロソ化 / 活性窒素種 / チロシンニトロ化 / プロテオーム |
Outline of Research at the Start |
タンパク質のシステイン残基のS-ニトロソ化(SNO化)、チロシン残基のニトロ化(PTN化)は、一酸化窒素(NO)などの活性窒素種(RNS)による翻訳後修飾の一種であり、タンパク質の機能を制御する因子として様々な生命現象に関わっている。これらは哺乳類において盛んに研究されているが、酵母においてはほとんど理解が進んでいない。本研究では、SNO化タンパク質、PTN化タンパク質のハイスループットな網羅的定量解析系を構築し、これを用いて酵母におけるRNS依存的な生命機能の制御系を総合的に理解する。
|
Outline of Final Research Achievements |
My proteomic and biochemical analyses identified pyruvate decarboxylase Pdc1 as a nitrated protein. Nitration at Tyr157 and Tyr344 decreased the enzymatic activity of Pdc1. Further analyses showed that reactive nitrogen species (RNS) suppress the fermentation efficiency through the inhibition of Pdc1 by its nitration at Tyr157 and Try344. I also demonstrated that fructose-1,6-bisphosphate aldolase Fba1 was S-glutathionylated at Cys112, which inhibits the enzymatic activity of Fba1, in response to RNS. My metabolite quantification suggested that S-glutathionylation of Fba1 increased the intracellular NADPH, via the metabolic shift from glycolysis to pentose phosphate pathway. Furthermore, My cell viability assay showed that S-glutathionylation of Fba1 contributed to RNS tolerance in yeast. These results suggest that yeast protects cells from RNS stress by the increased NADPH via the metabolic shift induced by S-glutathionylation of Fba1.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、RNSストレス環境下で酵母のPdc1がニトロ化され、発酵力が抑制されることを見出した。発酵生産過程では、安価な炭素源である廃糖蜜が含有する亜硝酸塩がRNSを発生すること、発酵が阻害されることが知られている。本研究の成果は、発酵生産過程における発酵力阻害の分子機構を明らかにしたものであり、発酵産業への応用が期待できる。 一方、Fba1のS-グルタチオン化が、代謝フローの改変を介してRNSストレス耐性に寄与する機構は、これまでに報告が無い。また、活性中心以外のCys残基のS-グルタチオン化が酵素活性を抑制する現象も、全く新たな知見であり、RNS依存的翻訳後修飾の更なる理解に資する。
|
Report
(4 results)
Research Products
(40 results)