Project/Area Number |
19K16254
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 46010:Neuroscience-general-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Abe Takashi 東京大学, 定量生命科学研究所, 助教 (70756824)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2022: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 2光子顕微鏡カルシウムイメージング / 嗅覚記憶連合学習 / ショウジョウバエ キノコ体 / cAMP / Calucium / Dopamine / ACh / PKA / ショウジョウバエ / キノコ体 / 嗅覚記憶学習 / 2光子ライブイメージング / 匂い情報コーディング / 軸索コンパートメント / ドーパミン神経 / γケニオン細胞 / 2光子カルシウムイメージング / ショウジョウバエキノコ体 / ケニオン細胞 / γMB神経 / 内的状態 / 匂い応答地図 |
Outline of Research at the Start |
キノコ体は匂い記憶の形成に必須である。キノコ体神経の軸索は複数の出力域に区画化され固有の制御を受けるが、近年γ型神経群がCREBの発現レベルによりγCRE-pおよびCRE-n神経に分離でき、好悪の価値情報もコードすることが明らかになった。 しかし記憶学習前後での明確な可塑的変化はいまだ報告されていない。本研究では2光子顕微鏡を用い、γCRE-p/-nの軸索束において、学習前の匂い刺激への応答様式を複数出力領域で同時計測し、可塑性検証の前提となる匂い応答回路図を構築する。これを参考に学習前後の変化を顕微鏡下で観察し、プレシナプス側であるキノコ体神経の可塑性を検証し、記憶回路網の動的な理解を目指す。
|
Outline of Final Research Achievements |
The Drosophila mushroom body (MB) is the site of memory formation through the association of olfactory stimuli with aversive/attractive stimuli. The MB neurons consist of functionally distinct subtypes, and each axonal bundle is compartmentalized into multiple output regions, receiving distinct regulation. Using two-photon microscopy, we conducted experiments to obtain basic response profiles through in vivo imaging of odor responses in axonal regions before associative conditoning, aiming to establish a foundation for presynaptic plasticity analysis. Subsequently, we introduced a highly sensitive sensor for cAMP, which is thought to act as a coincidence detector in associative learning, and conducted simultaneous imaging of calcium and cAMP during association. This led to the observation of phenomena that could not be explained by the classical associative model. After further detailed experiments and analysis, we proposed a new model and submitted a paper on this to bioRxiv
|
Academic Significance and Societal Importance of the Research Achievements |
キノコ体のポストシナプス側であるMBON神経においては、網羅的に単一神経レベルの解像度で匂い応答が調べられ、可塑的変化も顕微鏡下で示された。一方プレシナプス側であるKCsにも可視的に検出可能な可塑性があるのかどうかは未解明の部分が多かった。これには、それぞれのKCサブタイプの区画化された出力域においてどのような制御機構が存在するのかについて多くが未知であり、可塑性変化の検出の前提となる生理学的知見が不足していることが一因として考えられた。サブタイプを分離した発現系統を用いることで、可視的に、時空間的分解能が高い応答プロファイルの構築が可能となり匂い記憶の形成メカニズムの理解に近づけると考えた。
|