• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Characterization of human glutathione S-transferase P1-1-catalyzed glutathionylation of proteins: as a clue to understand the inter-individual difference in drug-induced toxicity

Research Project

Project/Area Number 19K16348
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 47030:Pharmaceutical hygiene and biochemistry-related
Research InstitutionKanazawa University

Principal Investigator

ZHANG YONGJIE  金沢大学, ナノ生命科学研究所, 協力研究員 (80836180)

Project Period (FY) 2019-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2019: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
KeywordsGlutathionylation / Keap1 / GSTP1 / drug-induced toxicity / glutathionylation / Nrf2 / HS-AFM
Outline of Research at the Start

In this project, GSTP1-1-catalyezed glutathionylation of essential regulatory proteins in cell death/survival pathways will be characterized upon extrinsic stimuli, by using biomolecular imaging technique and cellular models. Additionally, the effects of glutathionylation on these proteins and polymorphism of GSTP1-1 on cellular resistance to chemical-induced toxicity will be elucidated. This study is expected to contribute to obtain understanding on GSTP1-1-catalyzed glutathionylation process and to identify genetic risk factors for drug-induced toxicity.

Outline of Final Research Achievements

GSTP1 catalyzes glutathionylation of proteins to alter their functions. Under normal condition, Keap1 protein interacts with Nrf2 protein, which induces detoxification-related genes, to interfere the translocation into nucleus. Upon oxidative stress, Keap1 is suggested to be glutathionylated, which may affect the interaction with Nrf2 protein. Several experiments were conducted to understand molecular mechanisms, and the following results were obtained. 1. Purified human GSTP1, Keap1, and Nrf2 were successfully obtained from E.coli heterologous expression system. 2. HS-AFM imaging conditions for these proteins were established and optimized. This is the first observation of these dynamic structure at single molecule level. 3. Clear oxidants-dependent glutathionylation of Keap1 were observed, which also indicating an oxidative status-dependency of Keap1 molecular structure. With application of this method, glutathionylated protein concentrations were determined from in vitro samples.

Academic Significance and Societal Importance of the Research Achievements

The elucidation of dynamic structures of Keap1 and Nrf2 is helpful for the understanding of their physiological roles and regulatory roles in oxidative stress status. The regulation of Keap1 glutathionylation on interaction with Nrf2 provides new insights into mechanisms of drug-induced toxicity.

Report

(3 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi