• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A basic investigation of texture analysis and deep learning for positron emission tomography

Research Project

Project/Area Number 19K17127
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionHokkaido University

Principal Investigator

Kobayashi Kentaro  北海道大学, 医学研究院, 客員研究員 (70756311)

Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2019: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywords核医学 / 人工知能 / radiomics / deep learning / PET / FDG / FDG-PET/CT / テクスチャー解析 / ポジトロン断層法 / texture解析 / AI / FDG PET
Outline of Research at the Start

テクスチャー解析とディープ・ラーニングがPETのAI診断に用いられるようになるための基礎的データを得ることを目指す。
テクスチャー解析として、ファントム・動物のPET画像を、ファントムの真の画像や腫瘍病理切片と比較検討し、テクスチャー解析の特徴量がどのような微小構造に対応しているのかを明らかにする。
ディープ・ラーニングについては申請者の所属する北海道大学病院で過去約10年間に蓄積された2万件以上のPET臨床画像を用いる。画像には医師が作成した報告書が付属しており、それを教師データとして機械学習を行う。(1)異常所見の有無、(2)もし異常があればその臓器をAIが指摘できるかを明らかにする。

Outline of Final Research Achievements

FDG PET-CT, which visualize the distribution of glucose metabolism in the body, is used in routine medical practice as a tool to visualize malignant tumors. As with other diagnostic imaging, there are great expectations for AI technology in PET, but there is insufficient basic data to apply it to real-world clinical practice. In this study, we focus on radiomics and deep learning. Radiomics is a technology or research field that quantifies the shape and internal heterogeneity of a lesion using pixel value formulas for diagnosis. On the other hand, deep learning is a technology that uses a deep neural network to include the feature design process in machine learning. In the present study, we applied these methods to clinical PET images as well as phantom images using 3D printer that simulated tumor, brain, and breast. We obtained meaningful data for future AI developments.

Academic Significance and Societal Importance of the Research Achievements

RadiomicsをPETに用いた研究は散見されるものの、実用化には至っていない。これはradiomicsの有用性が確立していないことが原因と考えられた。多数の特徴量の中から、どのような特徴量が有用であるかを明らかにしていく研究が不足していたため、今回はこれに焦点をあてた。臨床画像ではground truthが得られないことが多いため、ファントムを併用した。同時に、急速に進化するdeep learning(DL)技術をPETに応用していくことは急務と考えられたため、これもあわせて今回の研究テーマとし、DLが解決できる課題とそうでない課題とを区別するための知見を得ることができた。

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (5 results)

All 2021 2020

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 3 results) Presentation (2 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Preoperative Texture Analysis Using 11C-Methionine Positron Emission Tomography Predicts Survival after Surgery for Glioma2021

    • Author(s)
      Manabe Osamu、Yamaguchi Shigeru、Hirata Kenji、Kobayashi Kentaro、Kobayashi Hiroyuki、Terasaka Shunsuke、Toyonaga Takuya、Magota Keiichi、Kuge Yuji、Tamaki Nagara、Shiga Tohru、Kudo Kohsuke
    • Journal Title

      Diagnostics

      Volume: 11 Issue: 2 Pages: 189-189

    • DOI

      10.3390/diagnostics11020189

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A convolutional neural network-based system to classify patients using FDG PET/CT examinations2020

    • Author(s)
      Kawauchi Keisuke、Furuya Sho、Hirata Kenji、Katoh Chietsugu、Manabe Osamu、Kobayashi Kentaro、Watanabe Shiro、Shiga Tohru
    • Journal Title

      BMC Cancer

      Volume: 20 Issue: 1 Pages: 227-227

    • DOI

      10.1186/s12885-020-6694-x

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Development of Combination Methods for Detecting Malignant Uptakes Based on Physiological Uptake Detection Using Object Detection With PET-CT MIP Images2020

    • Author(s)
      Kawakami Masashi、Hirata Kenji、Furuya Sho、Kobayashi Kentaro、Sugimori Hiroyuki、Magota Keiichi、Katoh Chietsugu
    • Journal Title

      Frontiers in Medicine

      Volume: 7 Pages: 616746-616746

    • DOI

      10.3389/fmed.2020.616746

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] A simplified brain-shaped phantom to evaluate O-15 image quality of digital photon counting PET-CT2020

    • Author(s)
      Kenji Hirata, Keiichi Magota, Naoto Numata, Michiaki Endo, Mao Kusuzaki, Daiki Shinyama, Ronee Asad, Kentaro Kobayashi, Tohru Shiga, Kohsuke Kudo
    • Organizer
      Society of Nuclear Medicine and Molecular Imaging
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] A simplified brain-shaped phantom to evaluate O-15 image quality of digital photon counting PET-CT2020

    • Author(s)
      Kenji Hirata, Keiichi Magota, Naoto Numata, Michiaki Endo, Mao Kusuzaki, Daiki Shinyama, Ronee Asad, Kentaro Kobayashi, Tohru Shiga, Kohsuke Kudo
    • Organizer
      Society of Nuclear Medicine and Molecular Imaging, 2020 Annual Meeting
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2019-04-18   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi