• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of Radiation Dose Reduction Stragegy Using Deep-learning Reconstruction for Pediatric CT

Research Project

Project/Area Number 19K17173
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionKumamoto University

Principal Investigator

Nagayama Yasunori  熊本大学, 病院, 助教 (60791762)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2021: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2020: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2019: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Keywords小児CT被ばく / 深層学習 / CT画像再構成法 / CT被ばく / 深層学習画像再構成法 / 画像再構成法 / CT画質 / 小児 / 人工知能
Outline of Research at the Start

小児は放射線感受性が高く、CTに際してX線被ばく線量の最適化が重要である。被ばく線量と画質の間にはトレードオフの関係があり、低被ばくと高画質を両立するには画像ノイズ除去と空間/コントラスト分解能の保持に優れた画像再構成法が必要である。近年、人工知能(Artificial intelligence: AI)技術を用いて画質向上を図る新たな深層学習画像再構成(Deep Learning Based Reconstruction: DLR)が開発された。本研究の目的は、DLRの画質特性を基礎的・臨床的に明らかにし、小児CTにおけるDLRを用いた低被ばく撮像法を開発し、臨床応用することである。

Outline of Final Research Achievements

Children are known to be more radiosensitive than adults, highlighting the importance of optimizing radiation dose in CT scans. A trade-off exists between radiation dose and image quality, necessitating the incorporation of image reconstruction algorithms capable of reducing image noise and enhancing spatial/contrast resolution. In recent years, deep learning reconstruction (DLR) has emerged as an artificial intelligence-based technology for improving image quality. This research project investigated the image quality characteristics of DLR and evaluated its clinical application in reducing radiation exposure in pediatric CT scans.

Academic Significance and Societal Importance of the Research Achievements

本研究では、近年のAI技術の発達に伴い開発されたdeep-learning reconstruction (DLR) の小児CTにおける被ばく低減効果を示した。CT被ばくに起因する潜在的な発がんリスクの低下に寄与する成果であり、社会的意義は大きい。また、AIを活用した画像生成技術の有益な臨床応用例として、将来の研究の基礎となるという観点からも学術的意義の高い研究成果と考える。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (21 results)

All 2023 2022 2021 2020 2019

All Journal Article (7 results) (of which Peer Reviewed: 5 results) Presentation (14 results) (of which Int'l Joint Research: 10 results,  Invited: 2 results)

  • [Journal Article] Deep learning-based reconstruction can improve the image quality of low radiation dose head CT2023

    • Author(s)
      Nagayama Yasunori、Iwashita Koya、Maruyama Natsuki、Uetani Hiroyuki、Goto Makoto、Sakabe Daisuke、Emoto Takafumi、Nakato Kengo、Shigematsu Shinsuke、Kato Yuki、Takada Sentaro、Kidoh Masafumi、Oda Seitaro、Nakaura Takeshi、Hatemura Masahiro、Ueda Mitsuharu、Mukasa Akitake、Hirai Toshinori
    • Journal Title

      European Radiology

      Volume: 33 Issue: 5 Pages: 3253-3265

    • DOI

      10.1007/s00330-023-09559-3

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Lung-Optimized Deep-Learning-Based Reconstruction for Ultralow-Dose CT2023

    • Author(s)
      Goto Makoto、Nagayama Yasunori、Sakabe Daisuke、Emoto Takafumi、Kidoh Masafumi、Oda Seitaro、Nakaura Takeshi、Taguchi Narumi、Funama Yoshinori、Takada Sentaro、Uchimura Ryutaro、Hayashi Hidetaka、Hatemura Masahiro、Kawanaka Koichi、Hirai Toshinori
    • Journal Title

      Academic Radiology

      Volume: 30 Issue: 3 Pages: 431-440

    • DOI

      10.1016/j.acra.2022.04.025

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 特集 専攻医1年目で知っておきたいCT 14のこと~指導医からのメッセージ~ これだけは知っておきたい CTの医療被ばく2022

    • Author(s)
      永山 泰教
    • Journal Title

      臨床画像

      Volume: 38 Issue: 14 Pages: 12-20

    • DOI

      10.18885/CI.0000001052

    • ISSN
      0911-1069
    • Year and Date
      2022-10-30
    • Related Report
      2022 Annual Research Report
  • [Journal Article] Radiation Dose Reduction for 80-kVp Pediatric CT Using Deep Learning-Based Reconstruction: A Clinical and Phantom Study2022

    • Author(s)
      Nagayama Yasunori、Goto Makoto、Sakabe Daisuke、Emoto Takafumi、Shigematsu Shinsuke、Oda Seitaro、Tanoue Shota、Kidoh Masafumi、Nakaura Takeshi、Funama Yoshinori、Uchimura Ryutaro、Takada Sentaro、Hayashi Hidetaka、Hatemura Masahiro、Hirai Toshinori
    • Journal Title

      American Journal of Roentgenology

      Volume: - Issue: 2 Pages: 315-324

    • DOI

      10.2214/ajr.21.27255

    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Radiation dose optimization potential of deep learning-based reconstruction for multiphase hepatic CT: A clinical and phantom study2022

    • Author(s)
      Nagayama Yasunori、Goto Makoto、Sakabe Daisuke、Emoto Takafumi、Shigematsu Shinsuke、Taguchi Narumi、Maruyama Natsuki、Takada Sentaro、Uchimura Ryutaro、Hayashi Hidetaka、Kidoh Masafumi、Oda Seitaro、Nakaura Takeshi、Funama Yoshinori、Hatemura Masahiro、Hirai Toshinori
    • Journal Title

      European Journal of Radiology

      Volume: 151 Pages: 110280-110280

    • DOI

      10.1016/j.ejrad.2022.110280

    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] DLRが可能とする低被ばくと高画質の両立2022

    • Author(s)
      永山泰教
    • Journal Title

      INNERVISION

      Volume: 37 Pages: 4-5

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Deep Learning?based Reconstruction for Lower-Dose Pediatric CT: Technical Principles, Image Characteristics, and Clinical Implementations2021

    • Author(s)
      Nagayama Yasunori、Sakabe Daisuke、Goto Makoto、Emoto Takafumi、Oda Seitaro、Nakaura Takeshi、Kidoh Masafumi、Uetani Hiroyuki、Funama Yoshinori、Hirai Toshinori
    • Journal Title

      RadioGraphics

      Volume: 41 Issue: 7 Pages: 1936-1953

    • DOI

      10.1148/rg.2021210105

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Presentation] 深層学習画像再構成 に関する研究2022

    • Author(s)
      永山泰教
    • Organizer
      FCA-Webinar in 熊本・宮崎
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] DLRが可能とする低被ばくと高画質の両立2022

    • Author(s)
      永山泰教
    • Organizer
      Global Standard CT Symposium 2022
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Seeing More with Super-Resolution Deep-Learning CT Reconstruction: Physical Property and Clinical Potential2022

    • Author(s)
      Yasunori Nagayama, Takafumi Emoto, Daisuke Sakabe, Sentaro Takada, Takeshi Nakaura, Yoshinori Funama, Toshinori Hirai
    • Organizer
      第108回 北米放射線学会
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Task-based Image Quality Assessments of Super-Resolution Deep-Learning Reconstruction for Coronary CT Angiography2022

    • Author(s)
      Yasunori Nagayama, Takafumi Emoto, Daisuke Sakabe, Sentaro Takada, Takeshi Nakaura, Yoshinori Funama, Toshinori Hirai
    • Organizer
      第108回 北米放射線学会
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Efficacy of Super-Resolution Deep-Learning Reconstruction for the Assessments of Obstructive Coronary Artery Disease on Coronary CT Angiography2022

    • Author(s)
      Yasunori Nagayama, Takafumi Emoto, Daisuke Sakabe, Sentaro Takada, Takeshi Nakaura, Masafumi Kidoh, Seitaro Oda, Hidetaka Hayashi, Yoshinori Funama, Toshinori Hirai
    • Organizer
      第108回 北米放射線学会
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Improvement of Coronary Stent CT Imaging with Super-Resolution Deep-Learning Reconstruction: An Initial In Vivo Experience2022

    • Author(s)
      Yasunori Nagayama, Takafumi Emoto, Daisuke Sakabe, Sentaro Takada, Takeshi Nakaura, Masafumi Kidoh, Seitaro Oda, Hidetaka Hayashi, Yoshinori Funama, Toshinori Hirai
    • Organizer
      第108回 北米放射線学会
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Deep-learning reconstruction for unenhanced brain CT: Assessment of image quality and dose optimization potential2021

    • Author(s)
      Yasunori Nagayama
    • Organizer
      第107回 北米放射線学会
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 低線量CTにおけるDeep Learningを用いた再構成の画像特性 ファントム研究2021

    • Author(s)
      坂部 大介 , 船間 芳憲 , 永山 泰教 , 中戸 研吾 , 後藤 淳 , 榎本 隆文 , 羽手村 昌弘
    • Organizer
      日本放射線技術学会総会学術大会
    • Related Report
      2021 Research-status Report
  • [Presentation] Image quality and radiation dose reduction potential of the novel deep-learning reconstruction algorithm for pediatric body CT2021

    • Author(s)
      Yasunori Nagayama, Seitaro Oda, Daisuke Sakabe, Takafumi Emoto, Makoto Goto, Takeshi Nakaura, Toshinori Hirai
    • Organizer
      European Congress of Radiology (ECR) 2021
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Image quality characteristics and dose optimization potential of novel deep-learning reconstruction algorithm: a phantom experiment2021

    • Author(s)
      Yasunori Nagayama, Daisuke Sakabe, Makoto Goto, Takafumi Emoto, Seitaro Oda, Takeshi Nakaura, Toshinori Hirai
    • Organizer
      European Congress of Radiology (ECR) 2021
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Impact of deep-learning reconstruction algorithm on image quality of ultralow-dose lung CT: A phantom study2021

    • Author(s)
      Makoto Goto, Yasunori Nagayama, Daisuke Sakabe, Takafumi Emoto, Masafumi Kidoh, Seitaro Oda, Takeshi Nakaura, Toshinori Hirai
    • Organizer
      European Congress of Radiology (ECR) 2021
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Imaging characteristics of a deep learning reconstruction at low dose CT: A phantom study2021

    • Author(s)
      Daisuke Sakabe, Yoshinori Funama, Yasunori Nagayama, Kengo Nakato, Makoto Goto, Takafumi Emoto1, Masahiro Hatemura
    • Organizer
      The 77th Annual Meeting of the Japanese Society of Radiological Technology
    • Related Report
      2020 Research-status Report
  • [Presentation] Deep Learning-Based Reconstruction to Facilitate Lower Dose Pediatric CT: Technical Principles, Image Characteristics, and Clinical Implementations2020

    • Author(s)
      Yasunori Nagayama, Daisuke Sakabe, Makoto Goto, Takafumi Emoto, Seitaro Oda, Takeshi Nakaura, Osamu Ikeda, Toshinori Hirai
    • Organizer
      107th Scientific Assembly and Annual Meeting of the Radiological Society of North America
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Deep learning reconstruction can improve image quality and subjective acceptance in low radiation dose abdominal CT: Comparison with iterative reconstruction algorithm2019

    • Author(s)
      Seitaro Oda, Narumi Taguchi, Takafumi Emoto, Takeshi Nakaura, Yoshinori Funama, Masafumi Kidoh, Yasunori Nagayama, Hiroyuki Uetani, Akira Sasao, Yasuyuki Yamashita
    • Organizer
      北米放射線学会
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi