Project/Area Number |
19K18003
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 54040:Metabolism and endocrinology-related
|
Research Institution | Kanazawa University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
|
Keywords | 機能性副腎腫瘍 / ゲノム解析 / エピゲノム解析 / 人工知能 / 遺伝子解析 / DNAメチル化解析 / 原発性アルドステロン症 / 副腎腫瘍 / ゲノム・エピゲノム |
Outline of Research at the Start |
ステロイドホルモン過剰産生を伴う機能性副腎腫瘍(FAT)は、心血管合併症を含む様々な合併症を引き起こし、臨床上大変重要な疾患であるが、ホルモン過剰を是正する内科的治療が未確立であること、良悪性を確実に鑑別する方法が確立していないことが臨床上の大きな課題である。本研究では、1)FATに関するゲノム・エピゲノム情報の網羅的な解析を実施し、ステロイドホルモン過剰産生機構と腫瘍発生・進展の分子機構を明らかにすること、2)AIによる深層学習技術を用いて、FATに対する新たな機能性・良悪性の診断法の確立、の2点を目標とする。
|
Outline of Final Research Achievements |
Functional adrenal tumours (FAT) frequently cause various complications due to steroid hormone overproduction, and correction of the hormone excess is a therapeutic goal. Furthermore, no method has been established to reliably differentiate between benign and malignant tumours by imaging studies alone. The aim of this study was to establish medical treatment to suppress steroid hormone production and a new diagnostic method for adrenal tumours: in primary aldosteronism (PA), the most frequent form of FAT, genetic mutations could affect DNA methylation and cause hormone excess. . Various analyses on FAT were also performed to identify its clinical features, and further suggested that the use of AI could be a useful method for the functional diagnosis of PA and adrenal tumours.
|
Academic Significance and Societal Importance of the Research Achievements |
ステロイドホルモンを過剰産生する機能性副腎腫瘍は、比較的頻度の高い病態である。さらに、ホルモン過剰により高血圧、糖尿病、骨粗鬆症や臓器障害など様々な合併症を高頻度に引き起こす。また確定診断に、多くの時間と検査を要するという課題がある。本研究では、副腎腫瘍に対するゲノム・エピゲノム解析とともに、さまざまな臨床情報を組み合わせた解析を行い、機能性副腎腫瘍の基礎的・臨床的特徴を明らかにした。さらに、診断においてAI活用の可能性も導出した。これらの成果が、今後の副腎腫瘍の新たな診断および治療法の構築に有用な情報となる。
|