• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The development of postoperative hearing prediction system and the analysis of temporal bone imaging by artificial intelligence

Research Project

Project/Area Number 19K18787
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 56050:Otorhinolaryngology-related
Research InstitutionThe University of Tokyo

Principal Investigator

Koyama Hajime  東京大学, 医学部附属病院, 助教 (80825167)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
Fiscal Year 2021: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
Fiscal Year 2020: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2019: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Keywords耳科学 / 耳科手術 / 人工知能 / 機械学習 / 鼓室形成術 / 中耳 / 画像解析 / 術後成績予測 / 難聴
Outline of Research at the Start

これまで行われてきたCT画像から聴力改善を予測する研究では、医師が画像を見て診断した定性的な表現に頼るものであったた。今回、人工知能を用いて手術施行前の側頭骨CT画像を解析させ、術前に術後の聴力改善を予測する定量的なシステムを開発する。また、このモデルを用いて、予測に寄与するCT画像上の箇所を特定し、手術成績にもっとも影響を与える中耳構造物の病態の特定を目指す。

Outline of Final Research Achievements

We applied machine learning techniques in artificial intelligence to four clinical questions: (1) postoperative hearing outcomes in chronic otitis media, (2) postoperative hearing outcomes after cochlear implantation, (3) vestibular dysfunction after pediatric cochlear implantation, and (4) mapping conditions after pediatric cochlear implantation, with the aim of predicting postoperative complications, postoperative outcomes, and setting conditions, as well as identifying factors that influence them. The results of the study were as follows. The results showed that these machine learning predictions were useful for all otologic procedures, with preoperative air-bone gaps for tympanoplasty and preoperative speech outcome with hearing aids for cochlear implant surgery being the most important predictive factors. Vestibular function after cochlear implant surgery was also found to be potentially impaired over time.

Academic Significance and Societal Importance of the Research Achievements

耳科手術において、個々の患者にとって最も有益な情報とは、手術の一般的な成功割合や合併症の発生率ではなく、患者自身の改善の程度や合併症の発生率である。個別化医療が提唱されて久しいが、外科手術における個別化医療のためには、患者個々の状態に応じた手術治療成績が必要であり、機械学習による予測はそのための貴重な情報となる。本研究により、患者個人個人の状態に応じた最適の手術の提示、およびその手術によって得られる聴力やリスクなどを、高い精度を持って個別に提供できることがわかった。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (10 results)

All 2023 2022 2021 2019

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (7 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Application of Machine Learning to Predict Hearing Outcomes of Tympanoplasty2022

    • Author(s)
      Koyama Hajime、Kashio Akinori、Uranaka Tsukasa、Matsumoto Yu、Yamasoba Tatsuya
    • Journal Title

      The Laryngoscope

      Volume: 無 Issue: 9 Pages: 2371-2378

    • DOI

      10.1002/lary.30457

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Machine learning technique reveals prognostic factors of Vibrant Soundbridge for conductive or mixed hearing loss patients.2021

    • Author(s)
      Hajime Koyama, Anjin Mori, Daisuke Nagatomi, Takeshi Fujita, Kazuya Saito, Yasuhiro Osaki, Tatsuya Yamasoba, Katsumi Doi.
    • Journal Title

      Otology and neurotology

      Volume: -

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Alteration of vestibular function in pediatric cochlear implant recipients2021

    • Author(s)
      Hajime Koyama, Akinori Kashio, Chisato Fujimoto, Tsukasa Uranaka, Yu Matsumoto, Teru Kamogashira, Makoto Kinoshita, Shinichi Iwasaki, Tatsuya Yamasoba
    • Journal Title

      Frontiers in Neurology, section Neuro-Otology

      Volume: -

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] APPLICATION OF MACHINE LEARNING TO PREDICT HEARING OUTCOMES OF TYMPANOPLASTY2023

    • Author(s)
      Hajime Koyama, Akinori Kashio, Tsukasa Uranaka, MD, Yu Matsumoto, MD, PhD, and Tatsuya Yamasoba
    • Organizer
      International Federation of Otophinolaryngological Societies
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 人工知能を用いた、人工内耳術後前庭障害の予測2022

    • Author(s)
      小山 一、樫尾明憲、藤本千里、浦中司、木下淳、鴨頭輝、山岨達也
    • Organizer
      日本耳鼻咽喉科学会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 機械学習を用いた、小児人工内耳術後の初回および6ヶ月後マッピング条件予測2022

    • Author(s)
      小山 一、樫尾明憲、尾形エリカ、赤松裕介、浦中 司、浦田真次、佐原利人、山岨達也
    • Organizer
      日本耳科学会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 人工内耳埋込術による術前後の前庭機能変化2021

    • Author(s)
      小山 一
    • Organizer
      日本耳鼻咽喉科学会
    • Related Report
      2021 Research-status Report
  • [Presentation] 機械学習を用いた、慢性中耳炎に対する鼓室形成術術後聴力予測システムの開発2021

    • Author(s)
      小山 一
    • Organizer
      日本耳科学会
    • Related Report
      2021 Research-status Report
  • [Presentation] Machine learning technique reveals prognostic factors of Vibrant Soundbridge for conductive or mixed hearing loss patients2021

    • Author(s)
      小山 一
    • Organizer
      APSCI
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 人工知能を用いた術後聴力予測システムの開発2019

    • Author(s)
      小山 一
    • Organizer
      第29回日本耳科学会学術総会
    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi