• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of risk prediction model for re-admission in large inpatient data with machine learning

Research Project

Project/Area Number 19K19430
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 58030:Hygiene and public health-related: excluding laboratory approach
Research InstitutionUniversity of Tsukuba

Principal Investigator

Iwagami Masao  筑波大学, 医学医療系, 准教授 (30830228)

Project Period (FY) 2019-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Keywords機械学習 / 再入院 / 臨床予測モデル / リアルワールドデータ / 医療ビッグデータ / 予測モデル / 大規模入院データ
Outline of Research at the Start

日本では入院期間の短縮化に向けた動きが盛んになっているが、患者が完治していない状態で退院した場合や、退院後のフォローが不十分な場合、予期せぬ再入院の可能性が高まると予想される。しかし再入院のリスクをデータから客観的に予測し、臨床現場で活用している事例は乏しい。今回、機械学習を大規模入院データに適用して、再入院予測モデルの構築を行う。複数の機械学習の手法を用いてモデルを作成し、それらの予測能を比較することで、今後日本の各病院が再入院予測システムを導入する際の好ましい方法を提案する。またモデル作成を通じて、高リスク群の同定および介入による効果の推定を行い、再入院率の低下につなげることを目指す。

Outline of Final Research Achievements

We compared the predictive performance of gradient-boosted decision tree (GBDT), random forest (RF), deep neural network (DNN), and logistic regression with the least absolute shrinkage and selection operator (LR-LASSO) for 30-day unplanned readmission. We used electronic health records of patients discharged alive from 38 hospitals. We created six patterns of datasets having different numbers of binary variables (that over 5% or 1% of patients or 10 patients had) with and without blood-test results. For the dataset with the smallest number of variables (102), the c-statistic was highest for GBDT (0.740), followed by RF (0.734), LR-LASSO (0.720), and DNN (0.664). For the dataset with the largest number of variables (1543), the c-statistic was highest for GBDT (0.764), followed by LR-LASSO (0.755), RF (0.751), and DNN (0.720). We found that GBDT generally outperformed LR-LASSO, but the difference became smaller as the number of variables was increased and blood-test results were used.

Academic Significance and Societal Importance of the Research Achievements

近年リアルワールドデータ(電子カルテや医療レセプト)の収集・利活用や、大規模医療データに対して機械学習を適用することへの期待が高まっている。そこで本研究では、日本の退院患者の再入院予測を例に、機械学習と昔から使われていたロジスティック回帰モデルの予測能を比較する実験を行った。その結果、確かに機械学習の一種であるgradient-boosted decision tree(GBDT)が最も判別能に優れていたが、一方で、必ずしも多くの情報量を利用する時ほどそのベネフィットが高まるわけではないことも明らかになった。以上の結果は、今後日本で医療情報に機械学習を適用し社会実装する際に参考になるであろう。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (3 results)

All 2023 2022

All Journal Article (2 results) (of which Open Access: 2 results) Presentation (1 results)

  • [Journal Article] Comparison of machine-learning and logistic regression models to predict 30-day unplanned readmission: a development and validation study2023

    • Author(s)
      Masao Iwagami, Ryota Inokuchi, Eiryo Kawakami, Tomohide Yamada, Atsushi Goto, Toshiki Kuno, Yohei Hashimoto, Nobuaki Michihata, Tadahiro Goto, Tomohiro Shinozaki, Yu Sun, Yuta Taniguchi, Jun Komiyama, Kazuaki Uda, Toshikazu Abe, Nanako Tamiya
    • Journal Title

      medRxiv

      Volume: -

    • DOI

      10.1101/2023.05.06.23289569

    • Related Report
      2022 Annual Research Report
    • Open Access
  • [Journal Article] Introduction to Clinical Prediction Models2022

    • Author(s)
      Masao Iwagami, Hiroki Matsui
    • Journal Title

      Annals of Clinical Epidemiology

      Volume: 4 Issue: 3 Pages: 72-80

    • DOI

      10.37737/ace.22010

    • ISSN
      2434-4338
    • Related Report
      2022 Annual Research Report
    • Open Access
  • [Presentation] 大規模入院データによる再入院予測のための複数の機械学習法の比較2022

    • Author(s)
      岩上将夫、井口竜太、川上英良、山田朋英、後藤温、橋本洋平、道端伸明、小宮山潤、宇田和晃、田宮菜奈子
    • Organizer
      日本臨床疫学会第5回年次学術大会
    • Related Report
      2022 Annual Research Report

URL: 

Published: 2019-04-18   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi