• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of jump motion evaluation system using wearable sensors and a deep learning technique

Research Project

Project/Area Number 19K19948
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 59020:Sports sciences-related
Research InstitutionOsaka City University

Principal Investigator

Suzuki Yuta  大阪市立大学, 都市健康・スポーツ研究センター, 講師 (90747825)

Project Period (FY) 2019-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Keywords慣性センサ / 動作分析 / 関節トルク / 地面反力 / ニューラルネットワーク / 長・短期記憶 / カルマンフィルタ / 力学的仕事 / AI
Outline of Research at the Start

本研究の目的は,腰部および下肢に貼付した慣性センサから得られる身体各部の運動データとディープラーニングを用いて跳躍動作を評価するシステムを開発することである.健康な成人男女40名を対象に,垂直跳および立幅跳を行わせる.その時の動作をハイスピードカメラで撮影するとともに地面反力を測定し,跳躍高や跳躍距離に加えて下肢関節トルクやパワー等の跳躍のパフォーマンスに関するパラメータを算出する.そして,慣性センサのデータからこれらのパラメータを推定するためのニューラルネットワークを構築することで,慣性センサのデータから跳躍動作の評価が可能となる.

Outline of Final Research Achievements

The purpose of this study was to develop a system to estimate ground reaction forces and lower limb joint moments during vertical and horizontal jumping using inertial measurement units (IMUs) and artificial neural networks. Twelve university students participated in this study. Jump motions and ground reaction forces were measured during vertical and horizontal jumps. In addition, triaxial accelerations and angular velocities of the pelvis, thigh, shank, and foot of right leg were measured using four IMUs. A neural network was developed to estimate the ground reaction forces and joint moments from the data of IMUs. The results of the present study showed the potential of estimating the ground reaction forces and joint moments during both vertical and horizontal jumping using IMUs and artificial neural networks.

Academic Significance and Societal Importance of the Research Achievements

本研究の結果から,慣性センサとディープラーニングにより跳躍動作中の地面反力や関節トルクを精度良く推定できることがわかった.したがって,従来は専門的な分析が必要だった跳躍動作の詳細な評価を,慣性センサを用いることで簡便に行うことが可能となった.今後は継続的な動作評価をもとにしたコンディションやスポーツ障害のモニタリング,本システムを応用した他のスポーツ動作の評価システムの開発などが期待される.

Report

(3 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • Research Products

    (8 results)

All 2020 2019

All Journal Article (4 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 4 results,  Open Access: 4 results) Presentation (4 results) (of which Int'l Joint Research: 4 results)

  • [Journal Article] Development of an automatic ball trajectory acquisition system for volleyball serves using a convolutional neural network2020

    • Author(s)
      鈴木 雄太, 村田 宗紀, 増村 雅尚
    • Journal Title

      Taiikugaku kenkyu (Japan Journal of Physical Education, Health and Sport Sciences)

      Volume: 65 Issue: 0 Pages: 273-279

    • DOI

      10.5432/jjpehss.19096

    • NAID

      130007829050

    • ISSN
      0484-6710, 1881-7718
    • Related Report
      2020 Annual Research Report 2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Comparison of Translational Momentum and Mechanical Energy Produced by Lower Limb Muscles between Horizontal and Vertical Jumps – A Computer Simulation Study2020

    • Author(s)
      Suzuki Y., Murata M.
    • Journal Title

      International Journal of Sport and Health Science

      Volume: 18 Issue: 0 Pages: 207-214

    • DOI

      10.5432/ijshs.202006

    • NAID

      130007997349

    • ISSN
      1348-1509, 1880-4012
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Change in shock attenuation during marathon running2020

    • Author(s)
      Enomoto Y, Suzuki Y, Hahn M, Aibara T, Yahata T
    • Journal Title

      Proceedings of 38th Conference of the International Society of Biomechanics in Sports

      Volume: 38 Pages: 824-827

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Estimation of ground reaction forces during running using inertial measurement units and artificial neural networks2020

    • Author(s)
      Suzuki Y, Enomoto Y, Hahn M, Aibara T, Yahata T
    • Journal Title

      Proceedings of 38th Conference of the International Society of Biomechanics in Sports

      Volume: 38 Pages: 544-547

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Change in shock attenuation during marathon running2020

    • Author(s)
      Enomoto Y, Suzuki Y, Hahn M, Aibara T, Yahata T
    • Organizer
      38th Conference of the International Society of Biomechanics in Sports
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Estimation of ground reaction forces during running using inertial measurement units and artificial neural networks2020

    • Author(s)
      Suzuki Y, Enomoto Y, Hahn M, Aibara T, Yahata T
    • Organizer
      38th Conference of the International Society of Biomechanics in Sports
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Estimation of Normal Ground Reaction Forces in a Real-World Environment Using Machine Learning2020

    • Author(s)
      Donahue S., Suzuki Y., Hahn M.E.
    • Organizer
      44th Meeting of the American Society of Biomechanics
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Produced Momenta and Work Outputs of Lower Limb Muscles during Horizontal and Vertical Jumps2019

    • Author(s)
      Suzuki Y., Murata M.
    • Organizer
      The 27th Congress of International Society of Biomechanics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2019-04-18   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi