• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Dimensional reduction method with interpretable estimated values

Research Project

Project/Area Number 19K20226
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 60030:Statistical science-related
Research InstitutionDoshisha University (2021)
Tokyo University of Science (2019-2020)

Principal Investigator

Tsuchida Jun  同志社大学, 文化情報学部, 助教 (40828365)

Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2021: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords主成分分析 / 因子分析 / 因子回転法 / 交互最小2乗法 / 次元縮約法 / 多変量解析 / Gini 係数 / 潜在変数モデル / 因子回転 / 正則化法 / 多変量解析法 / 単純構造
Outline of Research at the Start

2019年度では,Gini Indexがミンコフスキーノルム上で定義可能か検討し,Gini Indexの制約にと領域の制約の関連について検討する.
2020年度では,2019年度の研究で得られたミンコフスキーノルム上でのGini Indexを正則化項とした主成分分析を開発する.
ミンコフスキーGini Indexを正則化項とした多相多元データの次元縮約法を2021年度で開発し,実データに適用し有用性を示す.論文や学会発表を通じて,得られた成果を発信する.

Outline of Final Research Achievements

In this study, we used the Gini Index to measure the interpretability of estimated values. We developed dimensional reduction methods with the constraint that the Gini Index must be above a particular value. From this constraint, we could obtain the sparse estimated values with a large variance. This characteristic of the estimated values corresponds to the interpretability.
We have developed two methods: One is principal component analysis with the constraint that the Gini Index must be above a certain level. The other is a rotation method for factor analysis. We reported the study results to the public through conference presentations.

Academic Significance and Societal Importance of the Research Achievements

“解釈容易性”の議論は実用上重要であるが,現在,積極的に議論されていない.本研究では,Thurston(1947) が言葉でのみ定義した解釈容易性を,式によって表現することを目標とした.解釈容易性を式によって表現することで,実用上重要な問題である“解釈容易性”を担保した新しい統計手法の構築の基礎を作ることができる.本研究ではGini Index を用いて解釈容易性が定義できるかを検証し,解釈容易性を最大化する次元縮約法を開発した.本研究の成果は,新しい統計手法の構築の基礎の一助となる.

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (6 results)

All 2021 2020 2019

All Presentation (6 results) (of which Int'l Joint Research: 3 results)

  • [Presentation] A rotation method by using the Gini coefficient2021

    • Author(s)
      Jun Tsuchida, Hiroshi Yadohisa
    • Organizer
      Joint Statistical Meeting 2021
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A majorization-minimization algorithm for Gini coefficients penalized regression2021

    • Author(s)
      土田 潤, 宿久洋
    • Organizer
      2021年度統計関連学会連合大会
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Gini係数を用いた斜交回転法について2020

    • Author(s)
      土田潤,宿久洋
    • Organizer
      日本分類学会第39回大会
    • Related Report
      2020 Research-status Report
  • [Presentation] Principal component analysis using the Gini coefficient penalty function2019

    • Author(s)
      Jun Tsuchida, Hiroshi Yadohisa
    • Organizer
      Data Science, Statistics and Visualization 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Gini 係数をペナルティ関数とした主成分分析について2019

    • Author(s)
      土田潤,宿久洋
    • Organizer
      応用統計学会2019 年年会
    • Related Report
      2019 Research-status Report
  • [Presentation] Gini 係数を目的関数とした直交回転法について2019

    • Author(s)
      土田潤,宿久洋
    • Organizer
      日本分類学会第38 回大会
    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi