• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A Study of Parallel Evolutionary Algorithm Independent to Evaluation Time Variances

Research Project

Project/Area Number 19K20362
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61040:Soft computing-related
Research InstitutionTokyo Metropolitan University

Principal Investigator

Harada Tomohiro  東京都立大学, システムデザイン研究科, 助教 (40755518)

Project Period (FY) 2019-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2019: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Keywords進化計算 / 並列計算 / 最適化
Outline of Research at the Start

本研究では,解評価時間の差と偏りの不均一性によらずに短時間で最適解を獲得可能な並列化進化的アルゴリズム(PEA)の提案を目的とする.具体的には,解評価時間の偏りによる探索回数の差を考慮したPEAを考案するとともに,その手法を拡張し,最適化の過程で解評価時間の差と偏りの度合いに応じて適切に処理を変更することで解評価時間の不均一性によらず最適化可能なPEAを確立する.本研究では,ベンチマーク問題だけでなく,実データにもとづく交通網最適化問題を用いて従来PEAと提案PEAを比較し,解評価時間の不均一性によらず提案PEAが短時間で最適解を獲得可能であることを示す.

Outline of Final Research Achievements

This research proposes an efficient parallelization method for evolutionary algorithms (PEA), which are typical methods for solving optimization problems. Conventional PEA has a problem of not obtaining the optimal solution in a short computation time when the evaluation time of solutions differs and is biased. To address this problem, this research has proposed the following three PEA approaches; (1) semi-asynchronous PEA that can arbitrarily set the asynchrony of parallelization during optimization, (2) asynchronous PEA that introduces a selection mechanism considering the search progress of solutions, and (3) synchronous PEA that improves the computer utilization rate by the precedence evaluation.

Academic Significance and Societal Importance of the Research Achievements

本研究は,代表的な最適化手法である進化的アルゴリズム(EA)の計算時間削減のための効果的な並列化手法を確立した.実世界の多くの最適化問題では,解候補の評価にシミュレーションや複雑な数値計算が必要になるなど,莫大な計算時間が必要になり,かつそれぞれの解候補の評価時間は不均一である.これに対し,本研究の研究成果によって,EAの最適化性能を低下させることなく,最適化問題に要する計算時間を大幅に削減でき,製品開発やサービス提供のプロセスを大きく加速できる.

Report

(3 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • Research Products

    (25 results)

All 2021 2020 2019 Other

All Int'l Joint Research (2 results) Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (16 results) (of which Int'l Joint Research: 12 results) Remarks (4 results)

  • [Int'l Joint Research] University of Malaga(スペイン)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] University of Malaga(スペイン)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Comparison of Synchronous and Asynchronous Parallelization of Extreme Surrogate-Assisted Multi-Objective Evolutionary Algorithm2020

    • Author(s)
      Tomohiro Harada, Misaki Kaidan, Ruck Thawonmas
    • Journal Title

      Natural Computing

      Volume: nil Issue: 2 Pages: 1-31

    • DOI

      10.1007/s11047-020-09806-2

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Parallel Genetic Algorithms2020

    • Author(s)
      Harada Tomohiro、Alba Enrique
    • Journal Title

      ACM Computing Surveys

      Volume: 53 Issue: 4 Pages: 1-39

    • DOI

      10.1145/3400031

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Analysis of semi-asynchronous multi-objective evolutionary algorithm with different asynchronies2020

    • Author(s)
      Tomohiro Harada, Keiki Takadama
    • Journal Title

      Soft Computing

      Volume: 24 Issue: 4 Pages: 2917-2939

    • DOI

      10.1007/s00500-019-04071-7

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Parallel Differential Evolution Applied to Interleaving Generation with Precedence Evaluation of Tentative Solutions2021

    • Author(s)
      Hayato Noguchi, Tomohiro Harada, Ruck Thawonmas
    • Organizer
      ACM Genetic and Evolutionary Computation Conference 2021 (GECCO 2021)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Adaptation of Search Generations in Extreme Learning Assisted MOEA/D Based on Estimation Accuracy of Surrogate Model2021

    • Author(s)
      Koki Tsujino, Tomohiro Harada, Ruck Thawonmas
    • Organizer
      IEEE Congress on Evolutionary Computation 2021 (CEC 2021)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Search Progress Dependent Parent Selection for Avoiding Evaluation Time Bias in Asynchronous Parallel Multi-Objective Evolutionary Algorithms2020

    • Author(s)
      Tomohiro Harada
    • Organizer
      2020 IEEE Symposium Series on Computational Intelligence (SSCI 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Study on Efficient Asynchronous Parallel Multi-Objective Evolutionary Algorithm with Waiting Time Limitation2020

    • Author(s)
      Tomohiro Harada
    • Organizer
      Theory and Practice of Natural Computing 2020 (TPNC 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Interleaving Generation Evolutionary Algorithm with Precedence Evaluation of Tentative Offspring2020

    • Author(s)
      Hayato Noguchi, Akari Sonoda, Tomohiro Harada, Ruck Thawonmas
    • Organizer
      SICE Annual Conference 2020 (SICE 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Proposal of Surrogate Model for Genetic Programming Based on Program Structure Similarity2020

    • Author(s)
      Sohei Kino, Tomohiro Harada, Ruck Thawonmas
    • Organizer
      SICE Annual Conference 2020 (SICE 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Analysis of Relation between Prediction Accuracy of Surrogate Model and Search Performance on Extreme Learning Machine Assisted MOEA/D2020

    • Author(s)
      Koki Tsujino, Tomohiro Harada, Ruck Thawonmas
    • Organizer
      SICE Annual Conference 2020 (SICE 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Proposal of Multimodal Program Optimization Benchmark and Its Application to Multimodal Genetic Programming2020

    • Author(s)
      Tomohiro Harada, Kei Murano, Ruck Thawonmas
    • Organizer
      IEEE Congress on Evolutionary Computation 2020 (CEC 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Proposal of Multimodal Program Optimization Benchmark and Its Application to Multimodal Genetic Programming2020

    • Author(s)
      Tomohiro Harada, Kei Murano, Ruck Thawomnas
    • Organizer
      IEEE Congress on Evolutionary Computation 2020
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 多制約多目的最適化問題に対する変分オートエンコーダを用いる評価値推定と解修復による進化計算法2020

    • Author(s)
      大塚 一路,原田 智広,ターウォンマット ラック
    • Organizer
      第44回知能システムシンポジウム
    • Related Report
      2019 Research-status Report
  • [Presentation] 制約条件を考慮したISDE+を用いた風力発電用風車の多目的設計最適化2020

    • Author(s)
      野口 隼,原田 智広,ターウォンマット ラック
    • Organizer
      第17回進化計算学会研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] 多峰性プログラム最適化ベンチマークの提案と多峰性遺伝的プログラミングによる検証2020

    • Author(s)
      吉野 創平,原田 智広,ターウォンマット ラック
    • Organizer
      第17回進化計算学会研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] Mathematical Model of Asynchronous Parallel Evolutionary Algorithm to Analyze Influence of Evaluation Time Bias2019

    • Author(s)
      Tomohiro Harada
    • Organizer
      IEEE 6th the Asia-Pacific Conference on Computer Science and Data Engineering 2019 (IEEE CSDE 2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Using Graph Convolution Network for Predicting Performance of Automatically Generated Convolution Neural Networks2019

    • Author(s)
      Enzhi Zhang, Tomohiro Harada, Ruck Thawonmas
    • Organizer
      IEEE 6th the Asia-Pacific Conference on Computer Science and Data Engineering 2019 (IEEE CSDE 2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Multimodal Genetic Programming Using Program Similarity Measurement and Its Application to Wall-Following Problem2019

    • Author(s)
      Shubu Yoshida, Tomohiro Harada, Ruck Thawonmas
    • Organizer
      Multimodal Genetic Programming Using Program Similarity Measurement and Its Application to Wall-Following Problem
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] ELMOEA/Dにおける代替評価モデルの推定誤差と探索性能の関係性分析2019

    • Author(s)
      辻野 幸希,原田 智広,ターウォンマット ラック
    • Organizer
      第16回進化計算学会研究会
    • Related Report
      2019 Research-status Report
  • [Remarks] 原田智広個人Webページ

    • URL

      https://www.comp.sd.tmu.ac.jp/tomohiro-harada/

    • Related Report
      2020 Annual Research Report
  • [Remarks] 原田智広個人ホームページ

    • URL

      http://www.comp.sd.tmu.ac.jp/tomohiro-harada/

    • Related Report
      2019 Research-status Report
  • [Remarks] 東京都立大学システムデザイン学部/大学院システムデザイン研究科ホームページ

    • URL

      https://www.sd.tmu.ac.jp/

    • Related Report
      2019 Research-status Report
  • [Remarks] 東京都立大学システムデザイン学部電子情報システム工学科

    • URL

      http://www.comp.sd.tmu.ac.jp/eecs/

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi