• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Statistical Modeling for Evidence based Personalized Medicine

Research Project

Project/Area Number 19K20402
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 62010:Life, health and medical informatics-related
Research InstitutionTokyo Medical and Dental University (2020-2021)
Hiroshima University (2019)

Principal Investigator

Park Heewon  東京医科歯科大学, M&Dデータ科学センター, 教授 (70756642)

Project Period (FY) 2019-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywords遺伝子ネットワーク / 個別化医療 / 統計モデリング / 抗がん剤耐性 / 説明可能なAI / Sample-specific analysis / ネットワーク解析 / GWAS / genetic relationship / スパース主成分 / Statistical modeling / Personalized medicine
Outline of Research at the Start

近年、医療分野においては、患者個々のDNAやRNAを読み取り、得られたデータの解析から抽出された情報の活用に基づいてがん治療の成功率の向上を目指すゲノム個別化医療(genomic personalized medicine)の研究が急速に進んでいる。
本応募研究では、ゲノムデータ解析からEvidence Based Personalized Anti-Cancer Therapyへの治療のエビデンス提供を目指し、そのための統計モデリング技術開発研究の推進する。

Outline of Final Research Achievements

We developed statistical methodologies for Evidence Based Personalized Anti-Cancer Therapy. Especially, we focused on cell-line specific gene network analysis. We then extracted cancer characteristic specific gene networks by using the developed statistical approaches. We applied the methods to uncover complex mechanism of cancer, and extracted related biomarkers and their regulatory system that involved in mechanism of cancer.

Academic Significance and Societal Importance of the Research Achievements

個別化治療のためには、患者個々のゲノム情報の究明から患者個人に最適化された治療
法選択は重要であり、そこで患者個々の治療のエビデンスの抽出は治療効果を向上させるために必須である。しかし、従来の手法に基づいては患者個々の情報を取り出すことができないため、患者個々のゲノム特性が究明可能な新たなデータ解析技術の必要性が強く認識されていた。本研究で行った個別化医療へのエビデンス提供を目指す解析技術解発は、患者個々人の疾患関連情報を可能にするデータ解析技術であり、従来手法の限界を超え、個別化治療へ適切な治療エビデンスの提供を可能にすることで、治療効果を向上に貢献できると期待される。

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (5 results)

All 2022 2021 2020

All Journal Article (4 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (1 results) (of which Invited: 1 results)

  • [Journal Article] Uncovering Molecular Mechanisms of Drug Resistance via Network-Constrained Common Structure Identification2022

    • Author(s)
      Heewon Park, Rui Yamaguchi, Seiya Imoto, Satoru Miyano
    • Journal Title

      Journal of Computational Biology

      Volume: 29(3) Issue: 3 Pages: 257-275

    • DOI

      10.1089/cmb.2021.0314

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Xprediction: Explainable EGFR-TKIs response prediction based on drug sensitivity specific gene networks2021

    • Author(s)
      Heewon Park, Rui Yamaguchi, Seiya Imoto, Satoru Miyano
    • Journal Title

      PLOS ONE

      Volume: 未定 Issue: 5 Pages: e0261630-e0261630

    • DOI

      10.1371/journal.pone.0261630

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Automatic sparse principal component analysis2020

    • Author(s)
      Park Heewon、Yamaguchi Rui、Imoto Seiya、Miyano Satoru
    • Journal Title

      Canadian Journal of Statistics

      Volume: Online first Issue: 3 Pages: 1-24

    • DOI

      10.1002/cjs.11579

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Global gene network exploration based on explainable artificial intelligence approach2020

    • Author(s)
      Park Heewon、Maruhashi Koji、Yamaguchi Rui、Imoto Seiya、Miyano Satoru
    • Journal Title

      PLOS ONE

      Volume: 15 Issue: 11 Pages: e0241508-e0241508

    • DOI

      10.1371/journal.pone.0241508

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Comprehensive gene regulatory network analysisbased on explainable AI2021

    • Author(s)
      Heewon Park
    • Organizer
      第80回日本癌学会学術総会
    • Related Report
      2021 Annual Research Report
    • Invited

URL: 

Published: 2019-04-18   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi