Project/Area Number |
19K20706
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 90130:Medical systems-related
|
Research Institution | Gunma University |
Principal Investigator |
Koda Ren 群馬大学, 大学院理工学府, 助教 (40734273)
|
Project Period (FY) |
2019-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
|
Keywords | 超音波援用ドラッグデリバリシステム / ナノバブル / 高感度検出 / パルスインバージョン / 医用超音波システム / 計測システム / 微小気泡 |
Outline of Research at the Start |
本申請では高感度観測が可能な気泡信号計測技術の確立と小動物を用いた評価実験を目的として研究を進める。本研究では、気泡から能動的に放射される超音波信号を可視化するという独創的な画像の生成原理に加え、高感度化のための信号処理の適用により大幅な感度向上が見込まれる。手法の高感度検出を活かし、細胞に結合する極微少量の気泡からの微弱な信号の検出や、励振用超音波の低音圧化による気泡破壊を伴わない検出手法など、応用開拓を図る。最後に動物実験による評価実験を行い、ナノバブル気泡製剤を用いた超音波DDSの実現に向けて必要不可欠な高感度検出技術の確立を目指す。
|
Outline of Final Research Achievements |
In the ultrasound-mediated drug delivery systems (US-DDSs), which controls the drug concentration in the living body, there is a concern that the detection sensitivity will decrease due to the application of nanobubbles and low-sound-pressure ultrasound transmission. In this research, we have developed a method to apply a new pulse inversion method (called time division PI method) that shortens the time interval of ultrasonic pulse inversion transmission from the conventional millisecond order to the microsecond order. As a result, it was confirmed that even though the sound pressure was about 1/5, the sensitivity was 100 times higher than that of the conventional B-mode observation method, and it was shown that it was also effective in detecting nanobubbles.
|
Academic Significance and Societal Importance of the Research Achievements |
本手法の特徴であるマイクロ秒オーダーの反転送信の複数回加算により、従来のBモード観測法に比べ1/5の音圧で100倍高い感度をもつことを確認した。低音圧超音波送信に伴う低出力化により新たな応用が考えらえれる。低音圧化が達成されれば製薬分野での気泡製剤開発の発展に寄与するだけでなく、近年骨折治療などで注目されている低音圧超音波治療への応用が可能となり、低出力・高感度な「新たな検出法」を開発・実現する可能性がある。今後の発展により、ナノサイズ化した気泡を破壊することなく深部癌の超早期発見が可能になるなど、気泡観測だけでなく、革新的な治療診断技術創出を拓く基盤技術になる。
|