• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Explicit shape knowledge-based feature augmentation for disease progression analysis: application in liver fibrosis prediction

Research Project

Project/Area Number 19K20711
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 90130:Medical systems-related
Research InstitutionNara Institute of Science and Technology

Principal Investigator

SOUFI MAZEN  奈良先端科学技術大学院大学, 先端科学技術研究科, 助教 (80823525)

Project Period (FY) 2019-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2019: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Keywords肝線維化 / 統計形状モデリング / MR画像 / Liver fibrosis / Shape modeling / MR imaging / Shape analysis / Segmentation / Deep learning / Elastography
Outline of Research at the Start

Liver fibrosis is an asymptomatic chronic disease that might lead to liver cancer or liver failure if not diagnosed in early stages. Therefore, we aim at developing an automated framework for staging of liver fibrosis based on explicit shape information derived either from MR or CT images of multiple organs. We prospect that our approach will help to make the liver fibrosis stage check-ups prevalent in routine clinical procedures based on medical imaging, thereby helping in the early detection of the disease.

Outline of Final Research Achievements

In this research, I aimed at the development of disease progression model for prediction of the fibrosis stage in patients with chronic liver diseases. During the research period, I proposed an automated diagnosis approach based on MR images. By using a statistical shape model based on Partial Least Squares (PLS) method, an accuracy for early detection of liver fibrosis of 90±3% was obtained. The developed model did not only represent commonly observed generic variations associated with liver fibrosis, but also localized variations. This has shown the scientific significance of the developed model (IJCARS; Impact Factor: 2.473, JAMIT2019). In addition, a large-scale database of 251 MR images with ground-truth labels for the liver and spleen, and automatic segmentation research was performed (JAMIT2020).

Academic Significance and Societal Importance of the Research Achievements

本研究では、MR画像における統計形状解析とテクスチャ解析に基づいた特徴量を融合すると、肝線維化ステージの自動診断精度向上を示した。また、統計形状モデルにより、一般的に観察される左葉の全体的な肥大と右葉の収縮のみならず、局所的な変形、例えば右葉後部と尾状葉の肥大も表現できて、統計形状モデルの学術的な意義を確認できた。
さらに、251症例の肝臓と脾臓の正解データを作成し、深層学習に基づいた画像自動セグメンテーションツール(Bayesian U-Net)をMR画像に適応した。予測確信度とセグメンテーション精度(Dice係数)との高い相関を得て、本手法の汎用性を示した。

Report

(3 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • Research Products

    (6 results)

All 2021 2020 2019 Other

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results) Presentation (3 results) Remarks (1 results)

  • [Journal Article] Evaluation of Bayesian Active Learning for Segmentation of Liver and Spleen in Large Scale Abdominal MR Data Sets2021

    • Author(s)
      Bin Zhang, Yoshito Otake, Mazen Soufi, Masatoshi Hori, Noriyuki Tomiyama, Yoshinobu Sato
    • Journal Title

      IEICE Technical Report; IEICE Tech. Rep.

      Volume: 120 Pages: 62-65

    • Related Report
      2020 Annual Research Report
  • [Journal Article] Liver shape analysis using partial least squares regression-based statistical shape model: application for understanding and staging of liver fibrosis2019

    • Author(s)
      Mazen Soufi, Yoshito Otake, Masatoshi Hori, Kazuya Moriguchi, Yasuharu Imai, Yoshiyuki Sawai, Takashi Ota, Noriyuki Tomiyama, Yoshinobu Sato
    • Journal Title

      International Journal of Computer Assisted Radiology and Surgery

      Volume: 14 Issue: 12 Pages: 2083-2093

    • DOI

      10.1007/s11548-019-02084-z

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Evaluation of Bayesian Active Learning for Segmentation of Liver and Spleen in Large Scale Abdominal MR Data Sets2021

    • Author(s)
      Bin Zhang, Yoshito Otake, Mazen Soufi, Masatoshi Hori, Noriyuki Tomiyama, Yoshinobu Sato
    • Organizer
      IEICEメディカルイメージング連合フォーラム
    • Related Report
      2020 Annual Research Report
  • [Presentation] Prediction of Segmentation Accuracy of Liver and Spleen in Contrast-Enhanced MR Images Using Uncertainty Estimated from Bayesian U-Net2020

    • Author(s)
      Bin Zhang, Mazen Soufi, Yoshito Otake, Masatoshi Hori, Noriyuki Tomiyama, Yoshinobu Sato
    • Organizer
      第39 回日本医用画像工学会大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Staging of liver fibrosis by using texture and partial least squares-based statistical shape analyses in contrast-enhanced MR images2019

    • Author(s)
      Mazen Soufi, Yoshito Otake, Masatoshi Hori, Yasuharu Imai, Yoshiyuki Sawai, Takashi Ota, Noriyuki Tomiyama, Yoshinobu Sato
    • Organizer
      第38回日本医用画像工学会
    • Related Report
      2019 Research-status Report
  • [Remarks] Imaging-based Computational Biomedicine Laboratory

    • URL

      http://icb-lab.naist.jp/papers.html

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-04-18   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi