Project/Area Number |
19K20941
|
Project/Area Number (Other) |
18H05745 (2018)
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund (2019) Single-year Grants (2018) |
Review Section |
:Education and related fields
|
Research Institution | Tokyo University of Agriculture and Technology (2019) Kyoto University (2018) |
Principal Investigator |
Hasnine Nehal 東京農工大学, 工学(系)研究科(研究院), 特任助教 (30827720)
|
Project Period (FY) |
2018-08-24 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | ユビキタス学習 / ライフログ画像分析 / 教育ビッグデータ / 語彙学習 / Image recommendation / Learning analytics / Ubiquitous learning / Word-to-image / Society 5.0 / Cyber-physical space / Image Analytics / Educational Big Data / Vocabulary Learning / Learning Analytics / Language Learning / 単語学習 / 画像推薦 / ラーニングアナリテイクス / ユビキタス語彙学習 / 画帖推薦 / 教育ビッグデータ分析 / ラーニングアナリティクス |
Outline of Research at the Start |
本研究では,語学学習支援システムを用いて収集することができる教育ビッグデータを用いて,学習者の現在のコンテキストに応じた適切な画像を推薦する,Feature-based Context-specific AppropriateImages (FCAI)方式を提案する.このFCAI は,ユビキタス学習環境内で収集した教育ビッグデータ内に含まれる単語,時間,場所,語彙レベルや画像から,学習者のコンテキストに応じて,適切な学習教材を推薦することで,学習者の語彙能力向上を目指す.
|
Outline of Final Research Achievements |
In this research, lifelog images are analyzed for recommending Feature-based Context-specific Appropriate Images (FCAI) images. FCAI images are determined according to the foreign language learners' current context by using educational big data that are collected from a language learning support system. We proposed a Distributed Semantic Model(DSM) for analyzing lifelog images. We also analyzed words, time, place, vocabulary level and images as the educational big data from SCROLL(System for Capturing and Reminding Learning Log) server. The outcomes of this project are- 1) the creation of a small-scale wordbank using NLP techniques, 2) the development of image analysis tools where AI-based methods are leveraged, and 3) the development of recommendation tools called LFO panels that can recommend authentic and partially-authentic logs to foreign language learners.
|
Academic Significance and Societal Importance of the Research Achievements |
この研究は, CALL,mラーニング,ライフログ画像分析,ユビキタス学習,外国語語彙学習など研究分野に大きく貢献します. この研究は, 言語学習におけるapplied AIの採用を促進します. さらに、この研究は、Society 5.0言語学習のギャップを埋めるのに役立ちます. 関連する科学団体(APSEC,SOLAR,AACE, IIAI AAIなど)からこの研究について肯定的なフィードバックを受けました.
|