• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Moduli and peiods for Landau-Ginzburg models

Research Project

Project/Area Number 19K21021
Project/Area Number (Other) 18H05829 (2018)
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund (2019)
Single-year Grants (2018)
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionThe University of Tokyo

Principal Investigator

Shamoto Yota  東京大学, カブリ数物連携宇宙研究機構, 特任研究員 (50823647)

Project Period (FY) 2018-08-24 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywordsミラー対称性 / Landau-Ginzburg model / 周期積分 / Langau-Ginzburg模型 / Hodge理論 / Mirror対称性 / Stokes構造 / Landau-Ginzburg模型 / Moduli理論 / 不確定特異型微分方程式 / 頂点作用素代数 / Hodge theory / Landau Ginzburg model / Mirror symmetry / Fano manifolds / Moduli space
Outline of Research at the Start

複素代数多様体上の関数と指数関数の合成の積分は,様々な著しい特徴を持ちます.特に,被積分関数を(複素数の)パラメータ付きで動かした時,積分が満たす微分方程式は不確定特異性という著しい性質を持つことがあります.
本研究は,このようなパラメータ空間やその上に定まる微分方程式の記述を,ミラー対称性と呼ばれる数理物理的な現象や複素幾何学におけるHodge理論の観点から重要な例に対して行うことを目的とします.

Outline of Final Research Achievements

We have studied a geometric object, called a Landau-Ginzburg (LG) model, which consists of an algebraic variety and a regular function on it, and its period integral. The main source of idea is the mirror symmetry conjecture, which relates LG model with Fano manifolds. The main results are, 1. a preprint on an algebraic structure of exponential type vertex operators, which closely related to exponential period. 2. a preprint on the Stokes structure for differential-difference modules obtained from the period integral for LG models which should correspond to equivariant quantum cohomology groups for Fano manifolds.

Academic Significance and Societal Importance of the Research Achievements

本研究は, 数理物理学におけるミラー対称性や共形場理論のアイデアに基づく数学的構造の研究であるため, その進展, 理解の深まりは, これらの理論に対するより明確な理解につながると考えている. さらに, 差分方程式と呼ばれる離散的な対象に対する代数的なStokes構造の理論を確立することは, 学術的な意義もあると考えている.

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Annual Research Report
  • Research Products

    (6 results)

All 2020 2019 2018

All Journal Article (1 results) Presentation (5 results) (of which Int'l Joint Research: 3 results,  Invited: 5 results)

  • [Journal Article] Hodge-Tate Conditions for Landau-Ginzburg Models2018

    • Author(s)
      Shamoto Yota
    • Journal Title

      Publications of the Research Institute for Mathematical Sciences

      Volume: 54 Issue: 3 Pages: 469-515

    • DOI

      10.4171/prims/54-3-2

    • Related Report
      2018 Annual Research Report
  • [Presentation] Stokes filtered sheaves and differential-difference modules2020

    • Author(s)
      社本陽太
    • Organizer
      Algebraic differential geomerty seminor
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Stokes filtered sheaves and differential-difference modules2020

    • Author(s)
      社本陽太
    • Organizer
      ミラー対称性の諸相2020
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Stokes structure on some differential-difference modules2020

    • Author(s)
      社本陽太
    • Organizer
      Monodromy and hypergeometric functions
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Irregular vertex algebras2019

    • Author(s)
      社本陽太
    • Organizer
      Categorical and Analytic Invariants in Algebraic Geometry VII
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Hodge structures on tame compactified Landau-Ginzburg models2018

    • Author(s)
      社本陽太
    • Organizer
      Mirror Symmetry for Fano Manifolds and Related Topics
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited

URL: 

Published: 2018-08-27   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi