• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Global open submanifolds of compact complex manifolds

Research Project

Project/Area Number 19K21024
Project/Area Number (Other) 18H05834 (2018)
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund (2019)
Single-year Grants (2018)
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionOsaka City University

Principal Investigator

Koike Takayuki  大阪市立大学, 大学院理学研究科, 講師 (30784706)

Project Period (FY) 2018-08-24 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords上田理論 / レビ平坦超曲面 / K3曲面 / 部分多様体近傍 / レビ平坦 / 標準ケーラー計量 / 部分多様体 / 大域的開部分多様体
Outline of Research at the Start

閉複素多様体Xの適切な開部分多様体上に於いて, その標準ケーラー計量や特徴的な微分形式を, 適切な局所座標やその他の部分多様体の言葉を用いて具体的に記述すること, そしてそれらを用いてXの変形や空間自体への理解を深めることを目指す. このひな形となっているのは、岡山大学・上原崇人氏との共同研究によるK3曲面の貼り合わせ構成である. この研究をひな形としつつ, さらに部分複素多様体やレビ平坦超曲面及びそれらの近傍に関する独自の知識や技術的蓄積を活用することで, カラビヤウ多様体を中心とするより広いクラスでの理解を目指す.

Outline of Final Research Achievements

We studied geometric complex analysis mainly on a domain whose boundaries are Levi-flat hypersurface in a K3 surface and a blow-up of the projective plane at nine points.
As a joint work with Takato Uehara at Okayama University, our projects have gotten some progress into a Kahler geometrical aspects of such an open submanifolds. Related to this, we also studied some types of new geometrical constructions of K3 surfaces which corresponds to the degeneration of K3 surfaces of type III. At the same time, my research project on a deformation of the blow-up of the projective plane at nine points, which comes from the change of the choice of nine points configurations, have developed. As a result, we found a new sufficient condition for the nine points configurations so that the blow-up admits Levi-flat hypersurfaces.

Academic Significance and Societal Importance of the Research Achievements

多変数関数論の歴史を遡ると必ず登場する楕円曲線及び楕円積分に関する理論は, 様々な現代数学の源流と呼ぶに相応しいものである. 事実, その代数学的・幾何学的・解析学的性質の解明やそれらの関連についての考察は, 現代にまで通用する様々なアイディアを導き出している. 本研究で主な役割を担うK3曲面はその自然な一般化といえ, 具体例ではある一方で, 数学内外の非常に広範な範囲に及ぶ一般性を秘めた対象である. またヒルベルトの第14問題にも関連する具体例である射影曲面の9点爆発もまた別の文脈から非常に重要な具体例であり, これらに関する本研究は意義深いと言える.

Report

(3 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Annual Research Report
  • Research Products

    (21 results)

All 2019 2018 Other

All Int'l Joint Research (3 results) Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (14 results) (of which Int'l Joint Research: 5 results,  Invited: 12 results) Remarks (1 results) Funded Workshop (2 results)

  • [Int'l Joint Research] Philipps-Universitat Marburg(ドイツ)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] Chalmers University of Technology(スウェーデン)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] 中国科学院(中国)

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Plurisubharmonic functions on a neighborhood of a torus leaf of a certain class of foliations2019

    • Author(s)
      Takayuki Koike
    • Journal Title

      Forum Math.

      Volume: 31 Issue: 6 Pages: 1457-1466

    • DOI

      10.1515/forum-2018-0228

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] On a neighborhood of an elliptic curve and a gluing construction of K3 surfaces2019

    • Author(s)
      小池貴之
    • Organizer
      Mini-workshop on Complex Geometry
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On a neighborhood of an elliptic curve and a gluing construction of K3 surfaces2019

    • Author(s)
      小池貴之
    • Organizer
      Complex Geometry 2019 Tokyo
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Points of the Period domain which correspond to K3 surfaces constructed by gluing2019

    • Author(s)
      小池貴之
    • Organizer
      日本数学会年会函数論分科会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Gluing construction of K3 surfaces and complex analysis on a neighborhood of a complex submanifold2019

    • Author(s)
      小池貴之
    • Organizer
      城崎代数幾何シンポジウム
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] K3曲面とその幾何学的構成2019

    • Author(s)
      小池貴之
    • Organizer
      ENCOUNTERwithMATHEMATICS
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] K3曲面の貼り合わせ構成2019

    • Author(s)
      小池貴之
    • Organizer
      淡路島幾何学研究集会2020
    • Related Report
      2019 Annual Research Report
  • [Presentation] Minimal singular metrics on effective nef line bundles and neighborhoods of the stable base loci2019

    • Author(s)
      小池貴之
    • Organizer
      Singular Metrics in Complex Kahler Geometry
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Complex analysis on a neighborhood of a complex submanifold and its applications2019

    • Author(s)
      小池貴之
    • Organizer
      Sinica-NCTS Geometry Seminar
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Complex analysis on a neighborhood of a complex submanifold and its applications2019

    • Author(s)
      小池貴之
    • Organizer
      Some topics in several complex variables
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Gluing construction of non-projective K3 surfaces and holomorphic tubular neighborhoods of elliptic curves2018

    • Author(s)
      小池貴之
    • Organizer
      complex analysis special seminar
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] On a higher codimensional analogue of Ueda theory and its applications2018

    • Author(s)
      小池貴之
    • Organizer
      東工大幾何セミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] On the neighborhood of a torus leaf and dynamics of holomorphic foliations2018

    • Author(s)
      小池貴之
    • Organizer
      複素力学系研究とその発展
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Arnol'd's type theorem on a neighborhood of a cycle of rational curves2018

    • Author(s)
      小池貴之
    • Organizer
      葉層構造の幾何学とその応用
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Gluing construction of non-projective K3 surfaces and holomorphic tubular neighborhoods of elliptic curves2018

    • Author(s)
      小池貴之
    • Organizer
      多変数関数論冬セミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Remarks] https://tkoike.com/

    • Related Report
      2019 Annual Research Report
  • [Funded Workshop] Young Mathematicians Workshop on Several Complex Variables 20192019

    • Related Report
      2019 Annual Research Report
  • [Funded Workshop] Workshop on Complex Analytic and Algebraic Methods in Dynamics2019

    • Related Report
      2018 Annual Research Report

URL: 

Published: 2018-08-27   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi