Study on special algebraic curves over fields of positive characteristic via computer algebra
Project/Area Number |
19K21026
|
Project/Area Number (Other) |
18H05836 (2018)
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund (2019) Single-year Grants (2018) |
Review Section |
0201:Algebra, geometry, analysis, applied mathematics,and related fields
|
Research Institution | Kobe City College of Technology |
Principal Investigator |
Kudo Momonari 神戸市立工業高等専門学校, その他部局等, 講師 (10824708)
|
Project Period (FY) |
2018-08-24 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 代数幾何学 / 計算代数幾何 / 代数曲線 / 超特別曲線 / 最大曲線 / 正標数 / Hasse-Witt行列 / フロベニウス射 / フロベニウス写像 / コホモロジー群 / 超特異曲線 / 同種写像 / 計算代数 / 数式処理 |
Outline of Research at the Start |
数学とその応用分野において,曲線は古くから研究されてきた重要な研究対象であり,その中でも特に代数曲線は,主に代数幾何学・整数論と呼ばれる分野で研究されている図形である. 本研究では,特殊な代数曲線の探索・決定を目的としており,理論と計算の融合的なアプローチによって解決を目指している. 本研究で得られる特殊な代数曲線は,暗号・符号理論への応用可能性を併せ持ち,将来的には情報通信などへの応用が期待される.
|
Outline of Final Research Achievements |
Algebraic curves are central objects studied in algebraic geometry, number theory and related areas, and they are expected to be applied to information technology, in particular, cryptography and coding theory. In this study, we focused on algebraic curves said to be superspecial or maximal, and studied them by the combined approach of the theory of algebraic geometry and computer algebra. As a result, we have succeeded in solving several problems on the (non-)existence of superspecial curves and maximal curves, and problems on the enumeration of these curves. Furthermore, as an application to cryptography, we proposed efficient algorithms to compute isogenies between superspecial (supersingular) elliptic curves. Developing these algorithms shall contribute to evaluate the security of the state-of-art isogeny-based cryptosystems.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,超特別曲線・最大曲線と呼ばれる代数曲線について,種数と呼ばれるパラメータを固定したときに,上記曲線の存在・非存在性や数え上げに関する幾つかの問題の解決に取り組んだ. 本研究とその成果の学術的意義としては,先行研究では種数3以下の場合に多くの結果が得られていたのに対し,本研究では,これまで困難とされてきた種数4以上の場合を主に考察し結果が得られたという点で新規性が非常に高い.また,本研究では計算代数の手法を駆使している点で独自性が高い. 社会的意義としては,本研究で得られた曲線は暗号・符号理論において具体パラメータとして活用されうるという点で,情報通信分野などへの応用価値が期待される.
|
Report
(3 results)
Research Products
(18 results)