• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of automated classification of glomeruli with clinical information

Research Project

Project/Area Number 19K21115
Project/Area Number (Other) 18H05959 (2018)
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund (2019)
Single-year Grants (2018)
Review Section 0403:Biomedical engineering and related fields
Research InstitutionKyoto University

Principal Investigator

Uchino Eiichiro  京都大学, 医学研究科, 特定助教 (20820905)

Project Period (FY) 2018-08-24 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords腎病理 / 人工知能 / 機械学習 / 医療情報 / 病理画像 / 腎生検
Outline of Research at the Start

腎臓病の診断のために行われる腎生検で得られる腎病理画像について,自動診断システムの開発による診断プロセスの標準化 や定量化が期待されている.本研究においては,腎生検画像に加えて,腎生検前の検査値等の様々な臨床情報を統合し,各種病的所見の判定や腎機能の予 後・最適治療方針の予測を行う深層学習モデルを構築する.これらのモデルを構築,検証することにより,より臨床現場で応用 可能性の高いAIモデルの開発,現場実装に向けた検証へと進める.

Outline of Final Research Achievements

We developed a system that automatically determines pathological findings using an artificial intelligence model for glomerular images obtained from pathological images of renal biopsy. It was confirmed that the model showed similar classification performance to that of clinicians. Moreover, it was shown that the final classification performance might be improved if these models were used in a majority vote of the artificial intelligence model and clinicians.

Academic Significance and Societal Importance of the Research Achievements

近年応用への取り組みが進められている人工知能技術について、医療分野、特に腎臓病診療における病理画像診断にも有用である可能性と、現在の標準的な手法におけるベンチマークが得られた。また同種のモデルを実際の臨床現場に使えうるかという観点においても評価が行われ、今後の臨床応用に向けた可能性が示された。

Report

(3 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Annual Research Report
  • Research Products

    (1 results)

All 2019

All Journal Article (1 results) (of which Open Access: 1 results)

  • [Journal Article] Classification of glomerular pathological findings using deep learning and nephrologist-AI collective intelligence approach2019

    • Author(s)
      Eiichiro Uchino, Kanata Suzuki, Noriaki Sato, Ryosuke Kojima, Yoshinori Tamada, Shusuke Hiragi, Hideki Yokoi, Nobuhiro Yugami, Sachiko Minamiguchi, Hironori Haga, Motoko Yanagita, Yasushi Okuno
    • Journal Title

      medRxiv

      Volume: 19016162 Pages: 1-1

    • DOI

      10.1101/2019.12.30.19016162

    • Related Report
      2019 Annual Research Report
    • Open Access

URL: 

Published: 2018-08-27   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi