Development of automated classification of glomeruli with clinical information
Project/Area Number |
19K21115
|
Project/Area Number (Other) |
18H05959 (2018)
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund (2019) Single-year Grants (2018) |
Review Section |
0403:Biomedical engineering and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2018-08-24 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 腎病理 / 人工知能 / 機械学習 / 医療情報 / 病理画像 / 腎生検 |
Outline of Research at the Start |
腎臓病の診断のために行われる腎生検で得られる腎病理画像について,自動診断システムの開発による診断プロセスの標準化 や定量化が期待されている.本研究においては,腎生検画像に加えて,腎生検前の検査値等の様々な臨床情報を統合し,各種病的所見の判定や腎機能の予 後・最適治療方針の予測を行う深層学習モデルを構築する.これらのモデルを構築,検証することにより,より臨床現場で応用 可能性の高いAIモデルの開発,現場実装に向けた検証へと進める.
|
Outline of Final Research Achievements |
We developed a system that automatically determines pathological findings using an artificial intelligence model for glomerular images obtained from pathological images of renal biopsy. It was confirmed that the model showed similar classification performance to that of clinicians. Moreover, it was shown that the final classification performance might be improved if these models were used in a majority vote of the artificial intelligence model and clinicians.
|
Academic Significance and Societal Importance of the Research Achievements |
近年応用への取り組みが進められている人工知能技術について、医療分野、特に腎臓病診療における病理画像診断にも有用である可能性と、現在の標準的な手法におけるベンチマークが得られた。また同種のモデルを実際の臨床現場に使えうるかという観点においても評価が行われ、今後の臨床応用に向けた可能性が示された。
|
Report
(3 results)
Research Products
(1 results)
-
[Journal Article] Classification of glomerular pathological findings using deep learning and nephrologist-AI collective intelligence approach2019
Author(s)
Eiichiro Uchino, Kanata Suzuki, Noriaki Sato, Ryosuke Kojima, Yoshinori Tamada, Shusuke Hiragi, Hideki Yokoi, Nobuhiro Yugami, Sachiko Minamiguchi, Hironori Haga, Motoko Yanagita, Yasushi Okuno
-
Journal Title
medRxiv
Volume: 19016162
Pages: 1-1
DOI
Related Report
Open Access