Project/Area Number |
19K21834
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 12:Analysis, applied mathematics, and related fields
|
Research Institution | Osaka University (2023) Kyoto University (2019-2022) |
Principal Investigator |
Yano Kouji 大阪大学, 大学院理学研究科, 教授 (80467646)
|
Co-Investigator(Kenkyū-buntansha) |
佐藤 譲 北海道大学, 電子科学研究所, 准教授 (30342794)
角 大輝 京都大学, 人間・環境学研究科, 教授 (40313324)
中野 雄史 東海大学, 理学部, 准教授 (50778313)
中村 文彦 北見工業大学, 工学部, 准教授 (40825147)
豊川 永喜 九州大学, マス・フォア・インダストリ研究所, 助教 (30907762)
|
Project Period (FY) |
2019-06-28 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2020: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2019: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | ランダム力学系 / 確率過程論 / 一般化逆正弦法則 / 情報系分解 / 雑音誘起現象 |
Outline of Research at the Start |
時間の経過とともに完全な規則性に基づいて変化する系を決定的力学系と呼ぶ.単純なはずの規則性の反復は単純な秩序を生むこともあればカオスを惹き起こすこともある.一方で,部分的な規則性に偶然性が加わって変化する系はランダム力学系と呼ばれる.本研究では,偶然性を抽象化した理論である確率過程論のアプローチに基づき,複数の規則性が偶然性によって混合してできるランダム力学系において,元の規則性が持つ性質がどのような影響を受けるか,という問題を解明する.
|
Outline of Final Research Achievements |
Among the various aspects of random dynamical systems, which are given by adding certain randomness to deterministic dynamical systems, we have paid particular attention to the similarities with various properties of Markov processes in the theory of stochastic processes, and have aimed to mathematically elucidate several particular properties of random dynamical systems that are produced by the complex interplay of the properties of the deterministic dynamical systems. In this research, we have obtained remarkable results on the arcsine and the Darling Kac laws for some random dynamical systems constructed by random choice of interval maps, the aging effects for skew Bessel processes, and the problem of resolution of the sigma fields for action evolutions into the driving noise, the infinite past noise, and the third noise.
|
Academic Significance and Societal Importance of the Research Achievements |
決定的力学系にランダム要素を加えたランダム力学系の性質を数学的に解明することは、学術的にも社会的にも重要な意義がある.学術的には,逆正弦法則,エイジング効果,情報系分解という重要なテーマについて,新しい研究発展の方向性を開拓することができた.社会的には,複雑かつ予測不能なランダム現象に潜む数理的構造を理論的に捉える新しい知見を得ることができた.
|