Project/Area Number |
19K21852
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 13:Condensed matter physics and related fields
|
Research Institution | Kobe University |
Principal Investigator |
Ohta Hitoshi 神戸大学, 分子フォトサイエンス研究センター, 教授 (70194173)
|
Co-Investigator(Kenkyū-buntansha) |
櫻井 敬博 神戸大学, 研究基盤センター, 助教 (60379477)
|
Project Period (FY) |
2019-06-28 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2021: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2020: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2019: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | NVセンター / 光検出磁気共鳴 / ダイヤモンドアンビルセル / テラヘルツ / 電子スピン共鳴 / 窒素-空孔中心 / ダイヤモンドアンビル圧力セル |
Outline of Research at the Start |
本研究は,100GPaを超える超高圧を発生できるが,内径0.5mm以下と極端に小さい試料空間のため,これまでミクロスコピックな電子状態情報を得られる電子スピン共鳴(ESR)測定が従来手法で不可能であったダイヤモンドアンビル圧力セルにおけるESR測定を,新規測定法開発で可能にすることを目指す。具体的には,圧力セルのダイヤモンドに含まれる欠陥NV-センターを用いた光検出磁気共鳴(ODMR)のによるテラヘルツESRの開発を目指すが,前例がない開発なので圧力セルを用いたODMR手法によるテラヘルツESR測定の実証を本研究のゴールとする。
|
Outline of Final Research Achievements |
Due to the COVID-19 pandemic from the beginning of the research, it became almost impossible to exchange the latest information with the vendors and researchers who are indispensable for such Grant-in-Aid for Challenging Exploratory Research, so the plan showed a big delay. However, in 2021, it became possible to visit face-to-face society meetings and other laboratories, prepare for joint research on equipment necessary for demonstration experiments, and purchase a suitable diamond anvil pressure cell with this budget. Preparations for conducting a demonstration experiment were completed in the end of the January, 2022. However, due to the application of the COVID-19 priority measures in Japan, the visiting experiment could not be completed within the period. Demonstration experiments will be conducted soon, and we can move on to the next development stage.
|
Academic Significance and Societal Importance of the Research Achievements |
ヘリウムガスの液化が極低温を実現し超伝導の発見に繋がったように,極限環境における新計測法の実現は,物性物理学の発展に寄与することは間違いない。特に,ダイヤモンドアンビル圧力セルが実現する超高圧は,酸素の超伝導発見の例を待つまでもなく未踏のフロンティアであり,そこに電気抵抗や放射光以外の電子のミクロスコピック測定であるテラヘルツ電子スピン共鳴測定を実現するのは世界で初めての試みであり,その意義は計り知れない。
|