Project/Area Number |
19K21883
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 16:Astronomy and related fields
|
Research Institution | Nagoya University |
Principal Investigator |
|
Project Period (FY) |
2019-06-28 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2020: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2019: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
|
Keywords | 低温光学系 / 光学窓 / 宇宙赤外線観測 / 熱遮断光学窓 / 低温面形状計測 / レーザー干渉計 |
Outline of Research at the Start |
近年は、さまざまな光学計測分野において、精密加工技術の進歩とともに、光学系の複雑化・高度化が進んでいる。その一方で、光学性能を極めるには、熱的に安定な光学評価システムの確立が強く求められる。宇宙赤外線観測では光学系を低温に冷やす必要があるが、安定冷却状態を保ちながら光学計測を行うことは至難の業である。一般に、低温シュラウドに穴を設け、真空チャンバーの外に置かれたレーザー干渉計の光を導入して測定するのだが、常温からの輻射入熱は必ず問題になる。本研究では、干渉計レーザー波長だけを選択的に透過し、UVから遠赤外線帯までの電磁波を遮断する大口径の低温光学窓の実現を目指し、技術アイデアの原理検証を行う。
|
Outline of Final Research Achievements |
The measurement system consisting of a cryo-chamber and a He-Ne laser interferometer has been established for optical testing of aspherical mirrors at low temperatures. In particular, special entrance windows have been developed to prevent thermal radiation from outside the chamber as much as possible, which are installed at the entrance of the innermost low-temperature shroud of the cryo-chamber. More specifically, a band-pass optical filter tuned at the central wavelength of 633 nm (He-Ne) is fabricated on the substrate of selected fused silica with metal meshes. In parallel, the method of optical alignment with a CGH interferometer is studied for the aspherical mirror to be measured at low temperatures in the cryo-chamber with the special entrance windows.
|
Academic Significance and Societal Importance of the Research Achievements |
近年は、天文観測のみならず、さまざまな光学計測分野において、広視野・高解像度が求められており、光学系の複雑化が進んでいる。その一方で、性能を向上させるためには、熱的に安定な光学系の実現が強く求められる。とくに宇宙赤外線観測では、装置からの熱放射による赤外線フォトンノイズを軽減するために極低温に冷やす必要がある。多彩な低温光学計測を可能にするためには、熱をできるだけ遮断した環境下での低温チャンバーによるレーザー干渉計測の実現が必要不可欠であり、本研究ではその原理実証を行った。
|