• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of fatigue damage healing technology of metals by electron wind force control and elucidation of atom rearrangement and recombination mechanism

Research Project

Project/Area Number 19K21925
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 18:Mechanics of materials, production engineering, design engineering, and related fields
Research InstitutionWaseda University

Principal Investigator

Hosoi Atsushi  早稲田大学, 理工学術院, 教授 (60424800)

Project Period (FY) 2019-06-28 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2019: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Keywords疲労き裂治癒 / 高密度電流 / 疲労損傷治癒 / 高密度電流場 / き裂治癒 / 疲労 / 電流印加 / 金属 / 電子風力
Outline of Research at the Start

本研究は高密度電流場を制御することによる金属疲労損傷治癒技術を確立し、電子風力と金属原子の再配列・再結合の因果関係を明らかにすることにより疲労損傷治癒のメカニズムを解明することを目的とする。本技術を確立することによって、機械構造物の高齢化・老朽化に伴う事故や災害を防止すると共に長寿命化を図り、戦略的なストック・維持管理を可能にし、持続可能な社会の発展に貢献する。

Outline of Final Research Achievements

Fatigue damage and crack healing of metallic materials were achieved by controlling high-density current field, and its mechanism was investigated. It was found that the growth of extrusion on the surface of metallic materials could be retarded by applying high-density current. It was shown that the current application could reduce the atomic vacancy density by acting on atomic vacancies in the channel of the PSB, and thus suppress the growth of the extrusion. It was also shown that the effect of pulsed current on fatigue cracks is to reduce the stress intensity factor by acting on the thermal compressive stress around the crack, resulting in crack closure and inter-plane bridging.

Academic Significance and Societal Importance of the Research Achievements

本研究の成果により、金属材料にパルス電流を印加することで疲労き裂発生の遅延や発生したき裂の治癒の可能性が示された。電流は抵抗の低いところを選択的に流れることから微小欠陥やき裂を迂回するため、その先端に高密度電流場が形成される。つまり損傷部に選択的に電流の効果を付与することができる利点がある。

Report

(3 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • Research Products

    (6 results)

All 2020 2019 Other

All Journal Article (1 results) Presentation (2 results) (of which Int'l Joint Research: 1 results) Book (1 results) Remarks (2 results)

  • [Journal Article] 金属材料の疲労き裂治癒技術2020

    • Author(s)
      細井厚志
    • Journal Title

      金属

      Volume: 90 Pages: 19-26

    • Related Report
      2019 Research-status Report
  • [Presentation] 高密度パルス電流印加による純銅の疲労損傷発達に及ぼす影響とそのメカニズムの解明2020

    • Author(s)
      高橋秀幸,佐々春佳,有村誠矢,細井厚志,川田宏之
    • Organizer
      第28回機械材料・材料加工技術講演会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Suppression of slip band growth of copper alloy subjected to fatigue loading by electropulsing2019

    • Author(s)
      Hideyuki Takahashi, Taro Maeyama, Atsushi Hosoi, Hiroyuki Kawada
    • Organizer
      7th International Conference on Self-Healing Materials
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Book] 自己修復材料,自己組織化,形状記憶材料の開発と応用事例2020

    • Author(s)
      細井厚志他
    • Total Pages
      446
    • Publisher
      技術情報協会
    • ISBN
      9784861047817
    • Related Report
      2019 Research-status Report
  • [Remarks]

    • URL

      https://www.hosoi.amech.waseda.ac.jp/

    • Related Report
      2020 Annual Research Report
  • [Remarks]

    • URL

      http://www.hosoi.amech.waseda.ac.jp/index.html

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-07-04   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi