Development of a fabrication method for cellular membrane-integrated nanofluidic device utilizing nanochannel parallel two-phase flows
Project/Area Number |
19K21930
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 19:Fluid engineering, thermal engineering, and related fields
|
Research Institution | Keio University |
Principal Investigator |
Kazoe Yutaka 慶應義塾大学, 理工学部(矢上), 准教授 (20600919)
|
Project Period (FY) |
2019-06-28 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2020: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2019: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
|
Keywords | ナノ流路 / 脂質二重膜 / 混相流 / ナノチャネル / 細胞膜 / バイオミメティクス / 流体工学 |
Outline of Research at the Start |
ナノ流体工学が進展し化学分離・分析法の超高機能化が実現しつつある。一方、同スケールの細胞・小胞は既存の化学の方法ではできない多種多様な機能を有しており、その中の細胞膜と膜タンパクは様々な分子種の超高選択的輸送や濃度勾配を逆行する能動輸送など特異的な役割を担う。そこで代表者は、細胞膜と膜タンパクをナノ流路に組込み機能を再現すれば、既存の化学の延長でない新しいナノ流体機能デバイスを創成でき、夾雑物からの超高選択的分離、簡易迅速薬物モニタリング、人工細胞/小胞システムなどを実現できると着想した。そこで本研究では、独自のナノ流路油水平行二相流形成技術を活用したナノスケール脂質二重膜組込技術を開発する。
|
Outline of Final Research Achievements |
Nanofluidics utilizing 100 nm spaces has developed and realized analytical methods with ultra-high performances. On the other hand, cells and organelles with sizes similar to micro/nanospaces have various functions, which can not be realized by conventional chemical methods, and cellular membranes have specific roles such as ultra-high selective molecular transport and active transport opposite to the concentration gradient. Therefore, to create new functional devices by incorporating cellular membrane in nanochannels, this study developed a method to form lipid bilayer in nanochannel utilizing our multiphase fluid control technology. Utilizing a nanochannel with partial hydrophobic modification, stable manipulation of parallel two-phase flow was achieved. Based on this fluid operation, we succeeded in formation of lipid bilayer at an interface between two parallel channels with a 4000 nm depth for the first time.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究成果は、細胞や小胞のもつ多種多様な機能をナノ空間で再現し、既存の化学的手法の延長でない新奇方法論による超高選択的分離、少数薬物モニタリングなどナノ流体工学の新領域を開拓するための基盤技術を提供するものである。細胞膜の力学的応答の評価などin vitro研究ツールとしても活用でき、in vivo研究では困難であった現象解明の実現にも繋がる。このように、本研究は将来的にナノ流体工学、分析化学、生物学などの分野に大きな波及効果をもたらすと期待される。
|
Report
(4 results)
Research Products
(12 results)