Project/Area Number |
19K21934
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 19:Fluid engineering, thermal engineering, and related fields
|
Research Institution | Kyushu University |
Principal Investigator |
Inoue Chihiro 九州大学, 工学研究院, 准教授 (70466788)
|
Project Period (FY) |
2019-06-28 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2019: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
|
Keywords | 液体金属 / 微粒子 / 液滴 / 分裂 / 表面張力 / 分子拡散 / 高速度可視化 / 温度計測 / 微粒化 / 連鎖 |
Outline of Research at the Start |
従来の流体工学において、液滴は1回しか分裂しないと考えられていた。本研究は、金属液滴が自発的に10回も分裂を繰り返す、新しい現象である『液滴連鎖分裂』に着目する。本研究の目的は、『特異な分裂現象である液滴連鎖分裂の発生条件を特定すること』である。本研究を通じて、液滴連鎖分裂の発生条件を特定することで、従来よりもはるかに高効率な微粒子製造技術への展開が期待できる。本研究は、流体工学における独創的な取り組みであるとともに、革新的な微粒子製造技術への展開が期待できる点で、挑戦的研究としての価値を有する。
|
Outline of Final Research Achievements |
For the efficient production of fine metal particles, we conducted research with the aim of evaluating the applicability to innovative particle production technology by identifying the conditions under which liquid metals successively fragment. First, using a high-speed camera, we clarified the behavior of metal particles that split while scattering and the quantitative temperature. Then, metal fine particles were collected and investigated in detail from a microscopic viewpoint using an electron microscope. As a result, we succeeded in obtaining the diameter of metal particles and the diameter of bubbles inside. Furthermore, by combining high-speed visualization and theoretical analysis, diffusion phenomenon inside the particles and generation of bubbles inside were found being important for chain splitting, and continuous condensed phase reaction at high temperature was necessary for fine particle production.
|
Academic Significance and Societal Importance of the Research Achievements |
積層造形や粉末冶金に用いられる金属微粒子は,従来,高速の気体や水噴霧を溶融金属に衝突させて微粒化,冷却して製造する.このとき,個々の金属微粒子は1回しか分裂しないため,エネルギー効率が低い.この課題を解決するために,本研究では,液滴が繰り返し分裂する連鎖分裂現象を応用することを着想した.実験と理論解析を実施し,液体金属が連鎖的に分裂する条件を特定し,革新的な微粒子製造技術への適用性を評価した.
|