Project/Area Number |
19K21943
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 20:Mechanical dynamics, robotics, and related fields
|
Research Institution | The University of Tokyo (2020) Nagoya University (2019) |
Principal Investigator |
Arai Fumihito 東京大学, 大学院工学系研究科(工学部), 教授 (90221051)
|
Project Period (FY) |
2019-06-28 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2020: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2019: ¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
|
Keywords | マイクロ・ナノデバイス / マイクロマシン / 燃料電池 / 機械力学・制御 / バイオ関連機器 |
Outline of Research at the Start |
マイクロロボットを利用した非侵襲生体内治療の実現には,動力供給,泳動推進,無線制御が重要課題である.これら未解決課題に対し本研究では,生体内で動作しうる動力源,マイクロ流体環境に有効な推進原理,生体透過する外部信号による方向制御に着目し,生体内で供給可能なグルコースと酸素を燃料とするバイオ燃料電池と,その電位差に伴い発生する電気浸透流反力による自己電気浸透推進機構と,外部磁場による操舵制御機能とを統合した,新規マイクロ泳動ロボットを提案する.プロトタイプを用いた模擬生体環境下での実験により,推進,操舵,位置制御性能を実証・評価し,マイクロロボットの位置制御システムを実現する事に挑戦する.
|
Outline of Final Research Achievements |
We tried to realize a new self-propelled swimming microrobot and its position control system. The microrobot is integrated with a biofuel cell that uses glucose and oxygen as fuels supplied in the living body, and an electroosmotic propulsion mechanism that uses the electroosmotic flow reaction force generated by the biofuel cell. The control system can steer the microrobot incorporated with magnetic nanoparticles by external magnetic fields. We established a fabricating method for the microrobots made of photocurable composites containing nanoparticles using two-photon absorption three-dimensional lithography. Using about 10 μm microrobots by the fabrication method, we confirmed the self-propulsion velocity of 100 μm/s or more in a glucose solution. Therefore, we demonstrated the smaller and faster feature of that self-propelled mechanism expected theoretically. Furthermore, we developed a Helmholtz coil system for the steering control.
|
Academic Significance and Societal Importance of the Research Achievements |
本方式のマイクロロボットでは,生体で動作する動力源と小型化するほど高速となる自己推進機構を備え,操舵にのみ磁場を用いるため均一磁場生成と方向制御のみの簡略な装置構成となる.従って本方式は従来のマイクロロボット技術に対し,医用マイクロロボットの駆動・制御方式として優位かつ革新的であり,新規医療システムの創出に貢献できる可能性がある.特に従来のロボットでは到達が困難であった数100 μm以下の細く小さい領域での応用に適している.例えば,超極細の柔軟なカテーテルガイドワイヤ先端に配置し牽引・誘導するロボットや,所望の位置に薬剤などを搬送・投与する移動マイクロロボットなどが考えられる.
|