Project/Area Number |
19K22043
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 26:Materials engineering and related fields
|
Research Institution | Osaka University |
Principal Investigator |
|
Project Period (FY) |
2019-06-28 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
|
Keywords | 窒化物半導体 / 多光子顕微鏡 / 転位 / ラマン散乱 / GaN / ハイパーラマン散乱 / 窒化ガリウム / シリコンカーバイド |
Outline of Research at the Start |
GaNの深部に伝搬する貫通転位を非破壊で解析するための手法としてハイパーラマン散乱測定を提案し、深部の歪場を検出することを目的とします。多光子励起フォトルミネッセンス測定により転位の三次元座標を特定し、転位近傍の歪場をハイパーラマン散乱測定により計測します。転位による歪場を計算により求め、マッピング測定結果と一致するような結果が得られれば、転位の種類を含めた三次元・非破壊分析が可能となります。
|
Outline of Final Research Achievements |
Analysis of crystalline defects via nonlinear excitation process has been studied. First, identification of Burgers vector of threading dislocations in GaN using via multiphoton-excitation photoluminescence measurement was studied. Threading dislocations were observed as dark lines. They are classified by five according to their propagation habit and contrast. Next, edge component of threading dislocations were characterized using Raman spectroscopy. Peak wavenumber of E2-high mode was influenced by strain field by edge component of dislocations. Therefore threading edge and mixed dislocations were visualized by both multiphoton excitation photoluminescence and E2-high Raman mapping. Threading screw dislocations were only visualized by multiphoton excitation photoluminescence. Comparative study between multiphoton excitation photoluminescence and Raman spectroscopy could identify the type of dislocations.
|
Academic Significance and Societal Importance of the Research Achievements |
結晶欠陥の非破壊評価手法は次世代半導体の高品質化の開発だけでなく、デバイスの信頼性評価においても重要な役割を持つ。多光子励起過程を用いた結晶評価技術は、試料を加工することなく内部の欠陥を評価できることから、評価後の試料をデバイスプロセス等に利用することができ、スループットの向上や解析に係る時間の短縮につながる技術である。本研究で得られた成果を基に非破壊で結晶欠陥の識別や分類ができることで、キラー欠陥の特定につながることを期待している。
|