Fabrication of thermoplastic, remoldable, and mechanically-tough composite hydrogels
Project/Area Number |
19K22067
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 26:Materials engineering and related fields
|
Research Institution | Keio University |
Principal Investigator |
Hotta Atsushi 慶應義塾大学, 理工学部(矢上), 教授 (30407142)
|
Co-Investigator(Kenkyū-buntansha) |
黒川 成貴 慶應義塾大学, 理工学部(矢上), 助教 (50837333)
|
Project Period (FY) |
2019-06-28 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2019: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
|
Keywords | ポリマー / 熱可逆性 / ハイドロゲル / ダブルネットワーク / 複合材料 / 再成型性 / 再成型 / ソフトマター |
Outline of Research at the Start |
本研究は、強度・透明性・含水性を有し、熱により再成形可能な環境にやさしいハイドロゲルを作製することを目的とする。本材料は、バイオメディカル複合材料などとして大変有望なソフトマターとなりうる。本研究では、熱履歴がポリマーおよびゲル材料の物性および構造に与える影響を研究することによって、(I)急速冷却法による熱可逆なゲルの形成、をまずは目指す。その後、(II) 化学改質によるゲルの親水化を試み、さらに、(III) セルロースナノファイバー (CNF) 水分散液の含浸による複合構造の形成、へと進む。最終的には、高い破壊応力・破壊ひずみ・光透過度・含水率を有する熱可逆なハイドロゲルの作製に挑戦する。
|
Outline of Final Research Achievements |
In this research, we have developed a hydrogel with excellent mechanical property, transparency, and water absorption efficiency by introducing physical crosslinks between fiber networks of TEMPO-oxidized cellulose nanofibers (tCNF) and poly(acrylic acid) (PAA). In detail, a mixture of tCNF and PAA was made and frozen to establish physical crosslinkings through ethylenediamine. The resulting hydrogels formed a three-dimensional structure with dual fiber and molecular networks through intermolecular hydrogen bonding. As a result, we could successfully fabricate highly transparent and physically crosslinked hydrogels with the swelling rate reaching as high as 173, and the storage modulus of 13 kPa, despite the fact that the hydrogels were constructed by relatively weak hydrogen bonding.
|
Academic Significance and Societal Importance of the Research Achievements |
液体を多く含んだポリマーであるゲルは、液体性と高透明性、それに再成形性 (色々な形に何度も変えられる) というエコ機能化を有するために、環境面に関しても有望な材料として着目されている。さらに、液体が水であれば生体適合性が高くなり、医療材料などで大変有用な材料となる。しかし、液体が90%以上の材料は、液体性が際立って高くなり、もはや固体的な強度を保持することが困難となる。本研究は、水を大量に含む固体ゲル (99%の水) を作製し、強度を高く保持しながらも再成形が可能である材料創製を目指してきた。超微細構造制御をし、2つの均質な微細ネットワーク構造を導入することで、難題解決を目指した研究である。
|
Report
(4 results)
Research Products
(9 results)