Project/Area Number |
19K22081
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 27:Chemical engineering and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2019-06-28 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 水素 / 金属 / エネルギー / 核融合 / 水素貯蔵 / 表面化学 / 核融合反応 / 元素変換 / プラズモニクス |
Outline of Research at the Start |
震災による原発事故を受け、代替エネルギー源と放射能除去技術の開発は急務である。本研究では、金属中における凝縮系核融合に着目し、クリーンかつ無尽蔵なエネルギー生成・発電・元素変換法となる新規反応系を創出する。まず、金属ナノ構造体の活用により、極めて高密度な重水素燃料の充填状態を実現する。続いて、レーザ光、および、プラズモニック集光技術の導入により、核反応確率を飛躍的に向上させ、コンパクトかつ高効率な核融合発電装置の実現に結び付ける。さらに、核反応に伴う元素変換の可能性についても検討を行う。
|
Outline of Final Research Achievements |
We applied a bias voltage across multilayered Pd samples to provide a current injection through Pd, to stimulate the nuclear reaction by Joule heating, also anticipating strong electrodiffusion or electromigration, in addition to the conventional deuterium diffusion induced by pressure/mass-concentration and thermal gradients. We installed multiple kinds of lasers in the gas-phase D-Pd reaction system to irradiate the Pd samples coated with noble metal nanoparticles, as energetic stimulation support, potentially with a boosting plasmonic local field-enhancement effect. We simultaneously observed a sudden temperature increase with an overshoot and a neutron signal. Significantly, we observed a clear signal of substantial-amount 4He generation from the Pd samples as a shoulder peak on the D2 peak, and a possible 3He signal, via in-situ mass spectroscopy. We also observed a sudden burst of these gas species out of the Pd sample.
|
Academic Significance and Societal Importance of the Research Achievements |
従来検討されている方式の核融合の場合とは対照的に、本研究にて創出する新技術により、卓上に納まるようなサイズスケールの極めて小型の実証実験系、ひいては実用発電装置の実現可能性が生まれる。他にも、本研究による超小型核融合技術は、医療やセンシング向けの中性子発生器、元素変換による放射性物質の処理や、資源に乏しい我が国への助けとなるレアメタルやヘリウムの生成など、数多くの極めてニーズの高い用途への展開が可能である。また、本研究の中で構築した表面化学・光電磁気学ハイブリッドモデルは汎用性が高く、例えば、類似の系である、金属への水素貯蔵技術といった分野にも有用なツールとなると期待される。
|