Project/Area Number |
19K22129
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 29:Applied condensed matter physics and related fields
|
Research Institution | Osaka University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
佐藤 和則 大阪大学, 工学研究科, 准教授 (60379097)
|
Project Period (FY) |
2019-06-28 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2020: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2019: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
|
Keywords | プロトン / エピタキシャル薄膜 / ナノパターニング / 相変化 / 第一原理計算 / 単結晶薄膜 / 酸化バナジウム / 金属-絶縁体相転移 |
Outline of Research at the Start |
電子相転移物質である酸化バナジウム(VO2)高品質エピタキシャル超薄膜において、プロトンドーピングにより数10マイクロメートル以上の長距離にわたって急激な抵抗上昇を伴う絶縁体化現象を見出した。この超薄膜と独自の酸化物ナノ構造化技術を用い、省電力で非常に巨大な電気物性および光学特性を制御しうる【酸化物プロトニクス】デバイスを創製する。
|
Outline of Final Research Achievements |
Vanadium dioxide (VO2) is a strongly correlated electron material that causes metal-insulator transition (MIT) near room temperature. Hydrogenate-electrochemical transistors using correlated electron materials indicate a new avenue for dramatic control in their physical properties. In this research, we investigated hydrogen diffusion ration and their transport behavior as a function of distance between Pt catalytic electrodes with micrometer order. It was found that the resistance changed order of magnitude even in 2μm-electrode gap. In the similar system of perovskite Nickelate, the electric-field-assisted hydrogenation and corresponding resistance modulation of SmNiO3 thin-film resistors were systematically studied as a function of dc electric bias. An electric field, in addition to thermal activation, is demonstrated to effectively control the proton distribution.
|
Academic Significance and Societal Importance of the Research Achievements |
水素イオンを効率的に利用し、機能材料中の電子、スピン、軌道、結晶構造を効果的に制御することにより、機能性酸化物の多様な相が制御でき、量子材料の新規創発機能デザインが可能となる。更に、その動的制御法の確立により、通常のエレクトロニクスでは困難な巨大応答エレクトニクス、エネルギーデバイス適用が可能となる。通常の電子制御では不可能な巨大抵抗変調を示す新規エレクトロニクスなどの従来不可能であった広大な波及効果が期待される。その将来応用は、メモリ、センサ、機械学習デバイスなど、その波及効果は非常に大きい。
|