Electric control of catalytic association chemical reaction for adsorbed molecules on MOS-structured surfaces by applying gate voltages
Project/Area Number |
19K22130
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 29:Applied condensed matter physics and related fields
|
Research Institution | Nara Institute of Science and Technology |
Principal Investigator |
Hattori Ken 奈良先端科学技術大学院大学, 先端科学技術研究科, 准教授 (00222216)
|
Co-Investigator(Kenkyū-buntansha) |
桃野 浩樹 米子工業高等専門学校, その他部局等, 助教 (40882527)
|
Project Period (FY) |
2019-06-28 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2019: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
|
Keywords | 電子制御 / 会合脱離反応 / MOS構造 / 吸着分子 / ゲート電圧 / 表面吸着分子 / 会合反応 |
Outline of Research at the Start |
本研究は、金属層/酸化膜/半導体(MOS)デバイスでの『触媒化学反応の電子制御』実現のため、「MOS表面上の吸着分子の電子励起による会合反応を実証する」ことを目的としています。 会合反応には活性化障壁があり通常、熱エネルギーで障壁を乗り越えます。熱ではなく、【ゲート電圧印加時に酸化膜をトンネルして金属層に注入する電子正孔キャリアの】電子励起エネルギーで障壁を乗り越え、化学反応を促進させるのが本研究のアイデアです。 実験では、金属層表面に分子を吸着させ、ゲート電圧印加時に会合反応を通して脱離する異分子を質量分析計で捉えます。
|
Outline of Final Research Achievements |
In this research, we challenged to develop the basic functions of silicon semiconductor devices included in computers, etc. into chemical molecular reactions. The research idea is to use the energy of electrons (or holes) flowing through a semiconductor to induce association reaction and desorption reaction of gas molecules adsorbed on the surface. In the research, we have successfully demonstrated electronic excitation-induced desorption reactions of gas molecules associatively adsorbed on the metal layer surface, by producing a metal/oxide/semiconductor stacking structure, and by injecting energetically high electrons into the metal layer driven by applying voltages to both sides of the stacked structure.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究成果の学術的意義は、コンピューターに使われるトランジスタ素子を、全く異なる視点で触媒化学反応デバイスに応用できることを示し、言わば、電気電子工学分野と分子化学合成分野を融合した体系の芽を出させた点にあります。また、社会的意義は、今までの熱反応を利用した分子合成ではできない複雑で貴重な分子を、電子励起という非熱平衡アプローチで製造し得ることを示した点で、分子の化学反応を制御する夢の触媒シリコンデバイスを目指す初端と位置付けられます。
|
Report
(4 results)
Research Products
(7 results)