• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of CMOS-compatible plasmonics

Research Project

Project/Area Number 19K22148
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 30:Applied physics and engineering and related fields
Research InstitutionNational Institute of Advanced Industrial Science and Technology

Principal Investigator

Ikeda Kazuhiro  国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 研究グループ長 (70541738)

Project Period (FY) 2019-06-28 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2020: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2019: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Keywordsプラズモニクス / シリコンフォトニクス / 光集積回路
Outline of Research at the Start

本研究のCMOS互換プラズモニクスでは、アルミ・銅などのCMOS互換な金属材料を用いてシリコンフォトニクス上に局所的にプラズモニック回路を形成する。まず、計算によりシリコン導波路とプラズモニック導波路の高効率接続構造を設計する。さらに、設計した構造を所属機関が保有する45-nm技術ノードのCMOSプロセスを用いて実際に試作し、特性を実証する。

Outline of Final Research Achievements

Numerical analysis was performed for the long-range surface plasmon mode on aluminum, which is commonly used in silicon photonics. Even if the vertical asymmetry due to the wafer structure was introduced, the existence of a long-range propagation mode in which the plasmon modes at the left and right edge interfaces of the thin film were symmetrically coupled was confirmed.
An interlayer connection structure between the newly found long-range plasmon mode and the silicon waveguide was designed by numerical calculation. It was proved that it is possible to transfer from the plasmon mode on the aluminum thin film to the silicon waveguide mode with high efficiency (~ 2 dB) even if a wide gap of 1 um is set by adopting a vertical directional coupler.

Academic Significance and Societal Importance of the Research Achievements

CMOS互換であるアルミニウムを用いて、シリコンフォトニクスに活用できる長距離伝搬プラズモンモードを見出した。また、これを活用するために、シリコン光導波路と低損失で接続できる光接続構造を見出した。これによって、光通信容量の急増を支えるシリコンフォトニクスデバイスの更なる高機能化・小型化に向けた新たなデバイス構造等の可能性が拓かれた。

Report

(3 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report

URL: 

Published: 2019-07-04   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi