• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Creation of inorganic composite nanocatalysts to realize electrochemical amino acid synthesis

Research Project

Project/Area Number 19K22205
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 34:Inorganic/coordination chemistry, analytical chemistry, and related fields
Research InstitutionKyushu University

Principal Investigator

Yamauchi Miho  九州大学, 先導物質化学研究所, 教授 (10372749)

Project Period (FY) 2019-06-28 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2021: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2020: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords電解合成 / アミノ酸 / TiO2 / アルファ-ケト酸 / アルファ-アミノ酸 / 電気化学 / アミノ酸合成 / 立体制御 / グリシン / シュウ酸 / アナターゼ / カルボン酸 / 水素化
Outline of Research at the Start

本研究では、新規のアミノ酸合成法として、水を水素源とする電気化学的反応によるアミノ酸合成法の開拓を行う。電力をエネルギー源とするアミノ酸生成は、原始の地球環境に近い状態でおこる反応であると考えられ、生命の誕生の謎を解き明かす上でも注目される反応系である。まず、カルボン酸とアンモニアからのアミノ酸合成、次に硝酸イオンの電気化学還元によるアンモニア合成を行うための触媒の探索を行い、開発した触媒の複合化と反応条件の最適化により、カルボン酸と硝酸イオンからのアミノ酸合成を実現する。

Outline of Final Research Achievements

We prepared a composite inorganic nanocatalyst and constructed an electrochemical reaction system for synthesizing amino acids using electric energy derived from renewable energy. As a titanium electrode coated with titanium oxide, a titanium mesh (TiO2-Ti) was fabricated by directly growing anatase-type titanium oxide on the surface by hydrothermal treatment. Under the optimized reaction conditions, alanine was electrochemically synthesized with a Faradaic efficiency of 99%. Furthermore, electrosynthesis of other amino acids was performed. Amino acid electrosynthesis using a TiO2-Ti electrode can also be applied to the synthesis of amino acids having side chains with various functional groups other than alanine. Glycine, aspartic acid , glutamic acid , leucine (Leu), and phenylalanine were produced by reacting alpha-keto acids and NHOH as starting materials under the same conditions as in alanine synthesis. , valine, tyrosine, and isoleucine were electrochemically synthesized.

Academic Significance and Societal Importance of the Research Achievements

水を水素源とし、電気をエネルギー源とするアミノ酸生成反応は、より原始の地球環境に近い状態起こると考えられ、生命誕生に関わるアミノ酸の生成プロセスとして地球科学においても注目される。また、電気化学的アミノ酸合成は、再生可能電力を用いた様々な新規化学合成プロセスが開発される中で、特に、高付加価値の化学物質を作製するための重要な技術になると考えれられる。

Report

(4 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (23 results)

All 2022 2021 2020 2019

All Journal Article (6 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 6 results,  Open Access: 1 results) Presentation (9 results) (of which Int'l Joint Research: 5 results,  Invited: 9 results) Book (7 results) Patent(Industrial Property Rights) (1 results) (of which Overseas: 1 results)

  • [Journal Article] Achieving a Carbon Neutral Future through Advanced Functional Materials and Technologies2021

    • Author(s)
      Andrew Chapman, Toshinori Matsushima, et al
    • Journal Title

      Bulletin of the Chemical Society of Japan

      Volume: 95 Issue: 1 Pages: 73-103

    • DOI

      10.1246/bcsj.20210323

    • NAID

      130008159342

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Multiscale design for high-performance glycolic acid electro-synthesis cell: Preparation of nanoscale-IrO2-applied Ti anode and optimization of cell assembling2020

    • Author(s)
      Fukushima Takashi、Higashi Manabu、Kitano Sho、Sugiyama Takeharu、Yamauchi Miho
    • Journal Title

      Catalysis Today

      Volume: 351 Pages: 12-20

    • DOI

      10.1016/j.cattod.2019.03.071

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Electrosynthesis of glycine from bio-derivable oxalic acid2020

    • Author(s)
      Fukushima Takashi、Yamauchi Miho
    • Journal Title

      Journal of Applied Electrochemistry

      Volume: 51 Issue: 1 Pages: 99-106

    • DOI

      10.1007/s10800-020-01428-x

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Electrosynthesis of amino acids from biomass-derivable acids on titanium dioxide2019

    • Author(s)
      Fukushima Takashi、Yamauchi Miho
    • Journal Title

      Chemical Communications

      Volume: 55 Issue: 98 Pages: 14721-14724

    • DOI

      10.1039/c9cc07208j

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Electrochemical hydrogenation of non-aromatic carboxylic acid derivatives as a sustainable synthesis process: from catalyst design to device construction2019

    • Author(s)
      Sadakiyo Masaaki、Hata Shinichi、Fukushima Takashi、Juh?sz Gergely、Yamauchi Miho
    • Journal Title

      Physical Chemistry Chemical Physics

      Volume: 21 Issue: 11 Pages: 5882-5889

    • DOI

      10.1039/c8cp07445c

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Catalytic enhancement on Ti-Zr complex oxide particles for electrochemical hydrogenation of oxalic acid to produce an alcoholic compound by controlling electronic states and oxide structures2019

    • Author(s)
      Yamauchi M.、Hata S.、Eguchi H.、Kitano S.、Fukushima T.、Higashi M.、Sadakiyo M.、Kato K.
    • Journal Title

      Catalysis Science & Technology

      Volume: 9 Issue: 23 Pages: 6561-6565

    • DOI

      10.1039/c9cy01541h

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Efficient Hydrogenation Reactions for Energy Storage and Materials Conversion2022

    • Author(s)
      Miho Yamauchi
    • Organizer
      44th International Conference on Coordination Chemistry
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 無機ナノ触媒を用いた未来型物質変換2022

    • Author(s)
      山内美穂
    • Organizer
      熊本大学産業ナノマテリアル研究所2022シンポジウム
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 高効率物質変換のための無機ナノ粒子触媒の創製2020

    • Author(s)
      山内美穂
    • Organizer
      "日本物理学会2020年秋季大会 領域9, 領域1, 領域7, 領域10, 領域11シンポジウム ハイロドジェノミクスー変幻自在な水素を活かすサイエンス"
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 高効率物質変換のための無機ナノ粒子触媒の創製2020

    • Author(s)
      M. Yamauchi
    • Organizer
      日本物理学会 第75回年次大会(2020年)
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Nanomaterials to achieve electrochemical hydrogenation for efficient materials conversions2019

    • Author(s)
      M. Yamauchi
    • Organizer
      12th China-Japan Joint Symposium on Metal Cluster Compounds
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Inorganic Nanomaterials to Achieve Efficient Electrochemical Hydrogenation for Energy Storage and Materials Conversions2019

    • Author(s)
      M. Yamauchi
    • Organizer
      7th Asian Conference on Coordination Chemistry
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 水素化を介した無機ナノ粒子上での高効率エネルギー変換2019

    • Author(s)
      山内美穂
    • Organizer
      日本金属学会 2019年秋期講演大会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Inorganic Nanocatalysts to Achieve Efficient Electrochemical Hydrogenation for Energy Storage and Materials Conversions2019

    • Author(s)
      M. Yamauchi
    • Organizer
      ETA-ICAT joint symposium on catalysis
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Inorganic Nanocatalysts for Efficient Power Storage into liquid2019

    • Author(s)
      M. Yamauchi
    • Organizer
      2nd International Conference on Materials Science and Chemistry
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Book] アルコール溶液をキャリアとする高効率蓄電システム2020

    • Author(s)
      福嶋 貴, 北野翔, 山内 美穂
    • Total Pages
      4
    • Publisher
      クリーンテクノロジー, 解説, 日本工業出版
    • Related Report
      2020 Research-status Report
  • [Book] 水とバイオマスからアミノ酸をつくる!-発酵より簡便で既存の化学合成法より安全な合成プロセス2020

    • Author(s)
      福嶋 貴, 山内 美穂
    • Total Pages
      4
    • Publisher
      月刊「化学」, 解説, 化学同人
    • Related Report
      2020 Research-status Report
  • [Book] 電気エネルギーを用いたバイオマス由来カルボン酸と水からの高効率なアミノ酸合成2020

    • Author(s)
      福嶋 貴, 山内 美穂
    • Total Pages
      3
    • Publisher
      クリーンエネルギー, テクニカルレポート, 日本工業出版
    • Related Report
      2020 Research-status Report
  • [Book] a-ケト酸の電気化学的還元による効率的アミノ酸合成法2020

    • Author(s)
      福嶋 貴, 山内 美穂
    • Total Pages
      1
    • Publisher
      バイオサイエンスとインダストリー(B&I), トピックス, (一財)バイオインダストリー協会
    • Related Report
      2020 Research-status Report
  • [Book] 月刊「ケミカルエネジニアリング」2020

    • Author(s)
      福嶋 貴, 北野 翔, 山内 美穂
    • Total Pages
      4
    • Publisher
      化学工業社
    • Related Report
      2019 Research-status Report
  • [Book] 月刊「化学」2020

    • Author(s)
      福嶋 貴, 山内 美穂
    • Total Pages
      4
    • Publisher
      化学同人
    • Related Report
      2019 Research-status Report
  • [Book] 月刊「ケミカルエネジニアリング」2019

    • Author(s)
      福嶋 貴, 北野 翔, 山内 美穂
    • Total Pages
      6
    • Publisher
      蛹門ュヲ蟾・讌ュ遉セ
    • Related Report
      2019 Research-status Report
  • [Patent(Industrial Property Rights)] 電極触媒およびアミン化合物の製造方法2020

    • Inventor(s)
      山内美穂、福嶋貴、赤井翔
    • Industrial Property Rights Holder
      山内美穂、福嶋貴、赤井翔
    • Industrial Property Rights Type
      特許
    • Filing Date
      2020
    • Related Report
      2020 Research-status Report
    • Overseas

URL: 

Published: 2019-07-04   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi