Crystal growth of InN semiconductor for high performance pn junction diodes
Project/Area Number |
19K22228
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 36:Inorganic materials chemistry, energy-related chemistry, and related fields
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
Matsuzaki Kosuke 東京工業大学, 元素戦略研究センター, 特任助教 (40571500)
|
Project Period (FY) |
2019-06-28 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
|
Keywords | 窒化物合成 / 薄膜 / 窒化物 / アモノサーマル / 半導体 / 窒化物半導体 / 両極性ドーピング / 薄膜成長 |
Outline of Research at the Start |
InGaN混晶では組成制御(バンドギャップ: 0.65 ~ 3.4 eV)の観点から太陽光スペクトル全域をカバーする高性能太陽電池や三原色(青・緑・赤)LED発光素子が理論上期待される。本課題ではNH3窒化法の弱点を克服し、最も欠陥抑制が困難な窒化インジウム(InN)のp型ドーピングを目的とし、In系窒化物p/n接合素子応用へ展開する。
|
Outline of Final Research Achievements |
We have investigated a high-quality nitride synthesis of InN. We proposed and demonstrated a direct nitriding method that enables the synthesis of nitrides directly from metal precursors, which was difficult with conventional chemical reactions. In the low temperature region where the In metal thin film cannot be nitrided by NH3, the direct nitriding method adding a small amount of oxygen to NH3 can convert the In metal to InN partially. In addition, we found pure InN can be obtained using CO2 with weak oxidizing power and the nitriding temperature was lowered.
|
Academic Significance and Societal Importance of the Research Achievements |
Inを含む窒化物半導体はLEDや太陽電池として長く検討されているが、InとNの反応性が著しく低いため、高品質な結晶育成ができない。これまで知られているプラズマや熱分解で活性化される窒素化学種を用いない窒化法として、本提案の合成法をInNの結晶成長に適応することで、ナローギャップのIII-V族窒化物半導体の新領域が開拓される。
|
Report
(3 results)
Research Products
(5 results)