Project/Area Number |
19K22292
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 38:Agricultural chemistry and related fields
|
Research Institution | Nihon University |
Principal Investigator |
|
Project Period (FY) |
2019-06-28 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2020: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2019: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | 合成生物学 / 生合成経路 / 有用物質生産 |
Outline of Research at the Start |
細胞小器官が存在しない原核生物における代謝経路全体の人工的な区画化を目標として、天然型微小区画を材料に、その内在酵素を変更することで、より汎用性の高い補酵素再生経路を持つ基盤微小区画の構築を行い、副産物生成が課題となっている汎用化成品原料の生合成経路の区画化を目指す。
|
Outline of Final Research Achievements |
This study aimed to develop a synthetic biology tool that prevents the accumulation of intermediates and the formation of byproducts by compartmentalizing whole metabolic pathway, which involves the regeneration pathway of coenzymes, into an intracellular microcompartment. To compartmentalize whole metabolic pathway in prokaryotic cells without organelles, I tried to encapsulate desired enzymes into a bacterial microcompartment (BMC). Formation of fluorescent foci was observed in Escherichia coli cells co-expressing the BMC shell proteins and green fluorescent protein (GFP) fused to the encapsulation signal sequence using a fluorescent microscopy, suggesting intracellular co-localization. I’m planning to confirm the encapsulation of GFP into the BMC shell by the biochemical analysis of BMC shell isolated from recombinant E. coli cells co-expressing the BMC shell and GFP fused to the encapsulation signal sequence.
|
Academic Significance and Societal Importance of the Research Achievements |
合成生物学分野では、有用物質生産を目的として、人工的に設計した代謝経路を微生物に導入する研究が盛んに行われているが、様々な理由により十分な合成量が得られない場合が多々ある。本課題では、細胞小器官が存在しない大腸菌において、代謝経路を区画化することにより、中間体の蓄積や細胞内在酵素による副産物の生成を抑制し、更に、補酵素再生経路を内包することで、微小空間内での生合成反応を持続可能にする合成生物学ツールの開発を目標とした。本課題によって、大腸菌細胞内における細菌微小区画とGFPの共局在を示唆する結果を得たため、大腸菌細胞内における有用物質生産経路の区画化に向けた技術基盤が得られたと考えられる。
|