• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

GenomeGAN: in silico genome design with generative adversarial networks

Research Project

Project/Area Number 19K22897
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 62:Applied informatics and related fields
Research InstitutionKeio University

Principal Investigator

Sato Kengo  慶應義塾大学, 理工学部(矢上), 講師 (20365472)

Project Period (FY) 2019-06-28 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2020: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2019: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Keywordsバイオインフォマティクス / ゲノム合成 / 敵対的生成ネットワーク / 深層強化学習 / RNA配列設計 / RNA二次構造
Outline of Research at the Start

敵対的生成ネットワークによるゲノム設計の全く新しい方法を開発する.深層ニューラルネットワークが持つ高い表現力を活用することによって,既知遺伝子の組み合わせを最適化するのではなく,遺伝子配列の設計 からゲノムを構成する遺伝子セットの構成までをEnd-to-Endで実現する.これまでに解読された全ての生物のゲノム配列を学習データとし,ゲノム配列の識別モデルを学習すると同時に,ゲノム配列のベクトル表現である「潜在ゲノム空間」からゲノム配列を生成する モデルを獲得する.さらに,潜在ゲノム空間における線形代数的な演算を利用して,狙った形質を持つゲノム配列の生成・デザインを実現する.

Outline of Final Research Achievements

In order to generate a genome sequence with specific traits, we tackled the RNA sequence design problem of designing an RNA sequence that forms specific secondary structures. By using deep reinforcement learning as a learning method for optimizing the search of sequence space, more efficient generation of sequences for the target secondary structure is achieved. The optimization method for converting discrete nucleotide sequences into a differentiable representation using Activation Maximization was applied to the RNA sequence design problem. We improved IPknot, a method for predicting RNA secondary structure including pseudoknot structures, to achieve linear computational time with respect to sequence length.

Academic Significance and Societal Importance of the Research Achievements

合成生物学は,生命を再構成することによってその完全な理解を目指す究極のアプローチであると同時に,生物の工学的な応用に繋がることからその産業的な価 値も極めて高い.しかし,生命として完全に機能するゲノム配列を設計して,人工的な生命を合成することは困難を極める挑戦的な課題である.

Report

(4 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (18 results)

All 2021 2020 2019 Other

All Journal Article (5 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 5 results,  Open Access: 5 results) Presentation (11 results) (of which Int'l Joint Research: 6 results,  Invited: 1 results) Remarks (2 results)

  • [Journal Article] Prediction of RNA secondary structure including pseudoknots for long sequences2021

    • Author(s)
      Sato Kengo、Kato Yuki
    • Journal Title

      Briefings in Bioinformatics

      Volume: 23 Issue: 1

    • DOI

      10.1093/bib/bbab395

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A Max-Margin Model for Predicting Residue-Base Contacts in Protein-RNA Interactions2021

    • Author(s)
      Kashiwagi Shunya、Sato Kengo、Sakakibara Yasubumi
    • Journal Title

      Life

      Volume: 11 Issue: 11 Pages: 1135-1135

    • DOI

      10.3390/life11111135

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] RNA secondary structure prediction using deep learning with thermodynamic integration2021

    • Author(s)
      Sato Kengo、Akiyama Manato、Sakakibara Yasubumi
    • Journal Title

      Nature Communications

      Volume: 12 Issue: 1 Pages: 941-941

    • DOI

      10.1038/s41467-021-21194-4

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A Web Server for Designing Molecular Switches Composed of Two Interacting RNAs2021

    • Author(s)
      Taneda Akito、Sato Kengo
    • Journal Title

      International Journal of Molecular Sciences

      Volume: 22 Issue: 5 Pages: 2720-2720

    • DOI

      10.3390/ijms22052720

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] An improved de novo genome assembly of the common marmoset genome yields improved contiguity and increased mapping rates of sequence data2020

    • Author(s)
      Jayakumar Vasanthan、Ishii Hiromi、Seki Misato、Kumita Wakako、Inoue Takashi、Hase Sumitaka、Sato Kengo、Okano Hideyuki、Sasaki Erika、Sakakibara Yasubumi
    • Journal Title

      BMC Genomics

      Volume: 21 Issue: S3 Pages: 243-243

    • DOI

      10.1186/s12864-020-6657-2

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] RNA secondary structure prediction using deep learning with thermodynamic integration2021

    • Author(s)
      Sato, K., Akiyama, M., Sakakibara, Y.
    • Organizer
      Noncoding RNAs: Biology and Applications, Keystone Symposia
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] RNA secondary structure prediction using deep learning with thermodynamic integration2021

    • Author(s)
      Sato, K., Akiyama, M., Sakakibara, Y.
    • Organizer
      RNA meeting 2021
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Deep learning-based prediction of potential RNA G-quadruplexes with D-Quartet2021

    • Author(s)
      Kato, Y., Sato, K., Havgaard, JH., Kawahara, Y.
    • Organizer
      The 29th Intelligent Systems for Molecular Biology and the 20th European Conference on Computational Biology (ISMB/ECCB 2021)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] RNA secondary structure prediction using deep learning with thermodynamic integration2021

    • Author(s)
      Sato, K., Akiyama, M., Sakakibara, Y.
    • Organizer
      The 29th Intelligent Systems for Molecular Biology and the 20th European Conference on Computational Biology (ISMB/ECCB 2021)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] RNA secondary structure prediction using deep learning with thermodynamic integration,2021

    • Author(s)
      Sato, K., Akiyama, M., Sakakibara, Y.
    • Organizer
      第10回生命医薬情報学連合大会,日本バイオインフォマティクス学会2021年年会
    • Related Report
      2021 Annual Research Report
  • [Presentation] プライバシー保護技術を用いた遺伝子発現差異解析2021

    • Author(s)
      Kawaguchi, K., Sakakibara, Y., Sato, K.
    • Organizer
      第10回生命医薬情報学連合大会,日本バイオインフォマティクス学会2021年年会
    • Related Report
      2021 Annual Research Report
  • [Presentation] Prediction of RNA secondary structure including pseudoknots for long sequences2021

    • Author(s)
      Kengo Sato, Yuki Kato
    • Organizer
      情報処理学会第68回バイオ研究発表会
    • Related Report
      2021 Annual Research Report
  • [Presentation] MXfold2: 深層学習を用いたRNA二次構造予測2021

    • Author(s)
      佐藤健吾,秋山真那斗,榊原康文
    • Organizer
      第44回日本分子生物学会年会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 深層強化学習を用いた二次構造に基づくRNA配列の設計2020

    • Author(s)
      Yuki Hotta, Yasubumi Sakakibara and Kengo Sato
    • Organizer
      第9回生命医薬情報学連合大会(IIBMP2020)
    • Related Report
      2020 Research-status Report
  • [Presentation] A max-margin training of RNA secondary structure prediction integrated with the thermodynamic model2020

    • Author(s)
      Akiyama, M., Sato, K., Sakakibara, Y.
    • Organizer
      Noncoding RNAs: Mechanism,Function and Therapies, Keystone Symposia
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] A max-margin training of RNA secondary structure prediction integrated with the thermodynamic model2019

    • Author(s)
      Akiyama, M., Sato, K., Sakakibara, Y.
    • Organizer
      RNA Informatics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Remarks] MXfold2 Server

    • URL

      http://www.dna.bio.keio.ac.jp/mxfold2/

    • Related Report
      2020 Research-status Report
  • [Remarks] RNA二次構造予測で世界最高精度を達成

    • URL

      https://www.keio.ac.jp/ja/press-releases/2021/2/12/28-78076/

    • Related Report
      2020 Research-status Report

URL: 

Published: 2019-07-04   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi