Non-elastic light scattering interferometer for chemical contrast tomography
Project/Area Number |
19K22979
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 90:Biomedical engineering and related fields
|
Research Institution | Tokyo University of Science |
Principal Investigator |
Yui Hiroharu 東京理科大学, 理学部第一部化学科, 教授 (20313017)
|
Co-Investigator(Kenkyū-buntansha) |
浦島 周平 東京理科大学, 理学部第一部化学科, 助教 (30733224)
森作 俊紀 東京理科大学, 研究推進機構総合研究院, 助教 (00468521)
|
Project Period (FY) |
2019-06-28 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2020: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2019: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
|
Keywords | 局所粘弾性 / 光音響 / 光干渉計 / イメージング / トモグラフィー / 光散乱 / パワースペクトル / 光干渉 / 顕微鏡 / レオロジー / 分子種識別断層画像 / 誘導ラマン散乱 / OCT / 近赤外光 / ヘテロダイン干渉 / 後方散乱光エンハンスメント現象 |
Outline of Research at the Start |
非弾性散乱光である誘導ラマン散乱(SRS)光に基づく新規な化学コントラスト光干渉断層計を開発する。当該装置を眼底検査用や皮膚を模倣した光学ファントムに適用し、目的分子種選択的な断層画像を構築する。
|
Outline of Final Research Achievements |
At first, we have developed a stimulated Raman scattering interferometer, which enables us to identify chemical species of buried structures in materials with a high spatial resolution. This technique was applied to nanometer-structured silicon wafers buried in water, and it was demonstrated that the water went into the nanometer-sized holes on the wafers were observable even under buried configuration. Then, dynamic light scattering and photoacoustic waveform imaging techniques were developed for viscoelastic imaging of local areas in the samples. The former successfully tracked spatially and temporarily heterogeneous viscoelasticity of condensed slurries flowing/drying on rough surfaces. The latter probed the elasticity of samples buried in strong light scatterer. varying wide-range of tens to thousands kPa in Young’s modulus.
|
Academic Significance and Societal Importance of the Research Achievements |
時空間的に不均一な試料の分子分布や局所粘弾性を高空間分解能で計測できることは、医療診断や食品の検査に重要である。濃厚コロイド分散系や光散乱体に埋もれた構造体は食品・医薬品・生体組織内部などに普遍的に存在するため、本課題で開発した手法の応用範囲は多岐にわたる。 実際に本手法は多くの注目を集め、例えば生きたままの動物の内部組織における局所粘弾性を直接計測・イメージングする発展的研究として、AMED-CRESTの研究課題(加齢性難聴の克服に資する次世代型医療の基盤技術の創出、研究代表者:日比野浩(大阪大学)、分担研究)へと昇華した。
|
Report
(4 results)
Research Products
(6 results)