Geometric Numerical Integration Methods for Differential-Algebraic Equations and Their Application to Evolutionary Equations
Project/Area Number |
19K23399
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0201:Algebra, geometry, analysis, applied mathematics,and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
Sato Shun 東京大学, 大学院情報理工学系研究科, 助教 (40849072)
|
Project Period (FY) |
2019-08-30 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 構造保存数値解法 / 常微分方程式 / 微分代数方程式 / 偏微分方程式 / 陰的線形スキーム / 二次保存量 / SAV法 / exponential integrator / Lagrange Multiplier法 / 微分方程式 / 高精度 / 保存則 / 発展方程式 |
Outline of Research at the Start |
微分方程式の数値解法は現代科学の様々な分野において重要な役割を担っている.中でも,数値的に解きづらい問題に対しては,微分方程式の構造 (保存量や対称性など) を尊重した構造保存数値解法が有効であり,その理論は常微分方程式に対しては良く整備されている.しかし,常微分方程式の一般化である微分代数方程式に対する研究は未だ限定的かつ散発的である. 本研究では,微分代数方程式に対する構造保存数値解法の枠組の整備およびその偏微分方程式への応用を目指す.まずは既に研究を開始している微分代数方程式に対する構造保存数値解法の一般論を皮切りに更なる整備を行う.さらに,偏微分方程式に適用することで,その有用性を示す.
|
Outline of Final Research Achievements |
Structure-preserving numerical methods have been well developed for ordinary differential equations (ODEs), but they have not yet been well studied for differential-algebraic equations (DAEs), which are a generalization of ODEs and frequently appear as models of systems with constraints. This study aims at developing structure-preserving numerical methods for ODEs and DAEs, and their application to partial differential equations. Based on these objectives, we have proposed a gradient flow interpretation of the scalar auxiliary variable methods, constructed and analyzed high-order linearly implicit structure-preserving numerical methods for ODEs with quadratic invariants, and applied some structure-preserving numerical methods to a PDE with constraints.
|
Academic Significance and Societal Importance of the Research Achievements |
微分方程式の数値解法は現代科学のさまざまな分野において重要な役割を担っている.中でも,微分方程式の構造 (保存量や対称性など) を尊重した構造保存数値解法の有効性が20世紀末に認識され,今では広く利用されている. 本研究は構造保存数値解法の適用対象を広げるものであり,今後の数値シミュレーションにおいて有用であると期待される.
|
Report
(5 results)
Research Products
(19 results)