• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mathematical analysis of fluids with electrical effects

Research Project

Project/Area Number 19K23408
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionGifu University (2021-2023)
Tokyo University of Science (2019-2020)

Principal Investigator

Kajiwara Naoto  岐阜大学, 工学部, 助教 (40843131)

Project Period (FY) 2019-08-30 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords放物型発展方程式 / 最大正則性理論 / 解析半群理論 / Stokes方程式 / 解析半群 / 最大正則性 / ストークス方程式 / 自由境界問題 / 二相流体 / 準定常問題 / 電気流体力学 / 流体方程式 / 関数方程式論
Outline of Research at the Start

ある流体中に別の液滴が存在する状態を考えた二相流体のモデルは, 一般に定常状態が球体となることが知られている. 一方, 電場を作用させると定常解が楕円体となる. 本研究では, 電気流体力学の分野に現れるTaylor-Melcherモデルからこの定常解を記述できるかを解析する. また, 自由境界を持つ二相問題は今までFourier変換を用いた解析がほとんどであったが, 本研究ではLayerポテンシャルを用いた解析を行う. これにより未知関数同士が合成積の形で関連付けられ, 煩雑な計算を避けることができると期待される. また, 楕円体の形状解析にも応用ができると考えている.

Outline of Final Research Achievements

In this study, we were able to obtain new results of theories of analytic semigroup and maximal regularity. Although I couldn't use potential theory which was my original theme, I was able to gain enough knowledge. It was an integral Fourier multiplier theorem, and I succeeded to treat various boundary conditions. More precisely, the Stokes equations on the half space, two phase fluid problem (with and without surface tension), the heat equations on the layer domain. In addition, I showed maximal regularity for the quasi-steady problems. I believe that these are important positions of the future nonlinear problems.

Academic Significance and Societal Importance of the Research Achievements

一般に自然現象などを解析するには, 微分方程式が有効であることが知られている. 特に, 解の挙動を見ることができれば, ある種の未来予知ができているものと考えることができる. その中で, そもそも微分方程式は解を適切に持つのかということは数学的に示さなければならない問題である. 本研究成果では, その主張に対する一つの答えを与えることができたと思われる. 様々な境界の影響に対し, 統一的な評価を与えることができた. 従来の計算量を省略することができたり, より現実の数理モデルを考えることができるようになったと思われる. 数学解析を通じた現象の理解は社会的意義があるものと考えられる.

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (26 results)

All 2024 2023 2022 2021 2020 2019 Other

All Int'l Joint Research (1 results) Journal Article (5 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (17 results) (of which Int'l Joint Research: 3 results,  Invited: 10 results) Remarks (1 results) Funded Workshop (2 results)

  • [Int'l Joint Research] レーゲンスブルク大学(ドイツ)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Maximal regularity for the heat equation with various boundary conditions in an infinite layer2024

    • Author(s)
      Naoto Kajiwara, Aiki Matsui
    • Journal Title

      SUT Journal of Mathematics

      Volume: 59.2 Issue: 2

    • DOI

      10.55937/sut/1698562820

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Maximal Lp-Lq regularity for the heat equation with various boundary conditions in the half space2023

    • Author(s)
      梶原直人
    • Journal Title

      RIMS講究録

      Volume: -

    • Related Report
      2022 Research-status Report
  • [Journal Article] R-bondedness for an integral operator in the half space and its application to the Stokes problems2023

    • Author(s)
      梶原直人
    • Journal Title

      RIMS講究録

      Volume: ー

    • Related Report
      2022 Research-status Report
  • [Journal Article] HIGHER REGULARITY FOR PARABOLIC EQUATIONS BASED ON MAXIMAL Lp-Lq SPACES2022

    • Author(s)
      Kajiwara Naoto
    • Journal Title

      Advances in Differential Equations and Control Processes

      Volume: 27 Pages: 55-71

    • DOI

      10.17654/0974324322012

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Maximal Lp-Lq regularity for the Quasi-Steady Elliptic Problems2020

    • Author(s)
      Ken Furukawa, Naoto Kajiwara
    • Journal Title

      Journal of Evolution Equations

      Volume: - Issue: 2 Pages: 1601-1625

    • DOI

      10.1007/s00028-020-00638-2

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] Maximal regularity for the Stokes equations with various boundary conditions2024

    • Author(s)
      梶原直人
    • Organizer
      新潟駅前 応用解析研究会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Maximal regularity for the Stokes equations with various boundary conditions2024

    • Author(s)
      梶原直人
    • Organizer
      Workshop on Analysis in Kagurazaka 2024
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Resolvent estimate for the heat equation in an infinite layer with various boundary conditions2023

    • Author(s)
      梶原直人
    • Organizer
      大阪大学 微分方程式セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Resolvent estimate for the heat equation in an infinite layer with various boundary conditions2023

    • Author(s)
      梶原直人
    • Organizer
      北見工業大学における微分方程式セミナー
    • Related Report
      2023 Annual Research Report
  • [Presentation] Maximal L_p-L_q regularity for the Stokes equations with various boundary conditions2023

    • Author(s)
      梶原直人
    • Organizer
      若手による流体力学の基礎方程式研究集会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Resolvent estimate for the heat equation in an infinite layer with various boundary conditions2023

    • Author(s)
      梶原直人
    • Organizer
      東京理科大学理工学部数学科談話会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Maximal regularity for the Stokes equations in the half space2022

    • Author(s)
      梶原直人
    • Organizer
      名古屋微分方程式セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Maximal regularity for the Stokes equations with various boundary conditions2022

    • Author(s)
      梶原直人
    • Organizer
      日本数学会2022年度秋季総合分科会
    • Related Report
      2022 Research-status Report
  • [Presentation] 半空間におけるStokes方程式の最大正則性2022

    • Author(s)
      梶原直人
    • Organizer
      第106回岐阜数理科学セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Maximal regularity for the Stokes equations with various boundary conditions2022

    • Author(s)
      梶原直人
    • Organizer
      Innovation of the theory for evolution equations:developments via cross-disciplinary studies
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Maximal regularity for the Stokes equations with various boundary conditions in the half space2022

    • Author(s)
      梶原直人
    • Organizer
      Mathematical Analysis of Viscous Incompressible Fluid
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Maximal regularity for the Stokes equations with Dirichlet-Neumann boundary condition in an infinite layer2022

    • Author(s)
      梶原直人
    • Organizer
      第48回発展方程式研究会
    • Related Report
      2022 Research-status Report
  • [Presentation] Maximal regularity for the Stokes equations with various boundary conditions2021

    • Author(s)
      Naoto Kajiwara
    • Organizer
      第47回発展方程式研究会
    • Related Report
      2021 Research-status Report
  • [Presentation] Time periodic solutions to the bidomain equations2021

    • Author(s)
      Naoto Kajiwara
    • Organizer
      パターンダイナミクスに関連するモデリングと数理解析
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Higher regularity for parabolic equations based on maximal L_p-L_q spaces2020

    • Author(s)
      梶原直人
    • Organizer
      第46回発展方程式研究会
    • Related Report
      2020 Research-status Report
  • [Presentation] 動的境界条件付き高階楕円型方程式の可解性について2020

    • Author(s)
      古川賢
    • Organizer
      日本数学会2020年度年会
    • Related Report
      2019 Research-status Report
  • [Presentation] Maximal L_p-L_q regularity for quasi-steady problems2019

    • Author(s)
      梶原直人
    • Organizer
      第45回発展方程式研究会
    • Related Report
      2019 Research-status Report
  • [Remarks] research map

    • URL

      https://researchmap.jp/kajiwaranaoto

    • Related Report
      2023 Annual Research Report 2022 Research-status Report 2021 Research-status Report
  • [Funded Workshop] Studies in Analysis and Related topics at Noda2020

    • Related Report
      2019 Research-status Report
  • [Funded Workshop] PDE real analysis seminar2020

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-09-03   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi