• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A generalization of the theory of motives of algebraic varieties

Research Project

Project/Area Number 19K23413
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionNTT Communication Science Laboratories (2021-2022)
Institute of Physical and Chemical Research (2019-2020)

Principal Investigator

Miyazaki Hiroyasu  日本電信電話株式会社NTTコミュニケーション科学基礎研究所, 基礎数学研究P, 研究主任 (50799765)

Project Period (FY) 2019-08-30 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsモジュラス付きモチーフ理論 / モチーフ / モジュラス / ホモトピー不変性 / ホッジコホモロジー / de Rham-Witt複体 / Nisnevich位相 / モチーフ理論 / 代数的サイクル / ニスネヴィッチ位相
Outline of Research at the Start

数論幾何では代数方程式の解集合を素朴な例とする代数多様体の性質を研究する。複雑な関数を微分すると調べやすくなるように、複雑な幾何学的対象を調べるにはコホモロジーを考えることが有効である。代数多様体のコホモロジーには様々な種類があるが、モチーフはそれらを統制する親玉である。これまでのモチーフ理論は数論幾何に多くの応用をもたらしてきたが、ホモトピー不変性という強い仮定のため、代数多様体の数論的な情報を捉えられないという本質的な制約がある。本研究ではモチーフ理論を一般化することによってこの制約を克服し、数論的基本群や相対K群をはじめとする数論的な群をモチーフ理論によって統制することを目指す。

Outline of Final Research Achievements

We can transform many problems in number theory into the study of algebraic varieties. Moreover, we can extract the information of algebraic varieties as linear-algebraic data by using cohomologies. Many cohomologies capture different information, but mathematicians have been expecting that a universal theory, called motive theory, canonically controls those different cohomologies. Indeed, Voevodsky found such a theory controlling "homotopy invariant" cohomologies, providing many fruitful results.
In this project, we constructed a generalization of the conventional theory of motives to control non-homotopy invariant cohomologies and also found examples of such cohomologies our new theory controls.

Academic Significance and Societal Importance of the Research Achievements

モチーフ理論は、代数多様体のコホモロジーの組織的な分類を行うための枠組みとみなせる。各々のコホモロジーは代数多様体の一つの側面を観測する数学的装置だが、モチーフ理論でそれらを統合することにより、代数多様体の全体像が捉えられる。従来のモチーフ理論はホモトピー不変性をみたすコホモロジーを捉えるが、裏を返せば、それ以外の情報を失うという問題を抱えていた。本研究で構築したモジュラス付きモチーフ理論は、ホモトピー不変でないコホモロジーも制御可能であり、従来理論よりも理想的なモチーフに近いものである。本理論を用いれば、従来のモチーフ理論では見出せなかった代数多様体の新たな性質を明らかにできると期待される。

Report

(5 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • Research Products

    (23 results)

All 2022 2021 2020 2019 Other

All Int'l Joint Research (4 results) Journal Article (8 results) (of which Int'l Joint Research: 4 results,  Open Access: 7 results,  Peer Reviewed: 6 results) Presentation (10 results) (of which Int'l Joint Research: 4 results,  Invited: 8 results) Remarks (1 results)

  • [Int'l Joint Research] IMJ-PRG(フランス)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] IMJ-PRG(フランス)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] IMJ-PRG(フランス)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Institut de Mathematiques de Jussieu(フランス)

    • Related Report
      2019 Research-status Report
  • [Journal Article] A motivic construction of the de Rham-Witt complex2022

    • Author(s)
      Junnosuke Koizumi, Hiroyasu Miyazaki
    • Journal Title

      arXiv

      Volume: -

    • Related Report
      2022 Annual Research Report
    • Open Access
  • [Journal Article] Modulus triples2022

    • Author(s)
      Bruno Kahn, Hiroyasu Miyazaki
    • Journal Title

      arXiv

      Volume: -

    • Related Report
      2022 Annual Research Report
    • Open Access
  • [Journal Article] Motives with modulus, III: The categories of motives2022

    • Author(s)
      Kahn Bruno、Miyazaki Hiroyasu、Saito Shuji、Yamazaki Takao
    • Journal Title

      Annals of K-Theory

      Volume: 7 Issue: 1 Pages: 119-178

    • DOI

      10.2140/akt.2022.7.119

    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Structural reduction of chemical reaction networks based on topology2021

    • Author(s)
      Hirono Yuji、Okada Takashi、Miyazaki Hiroyasu、Hidaka Yoshimasa
    • Journal Title

      Physical Review Research

      Volume: 3 Issue: 4 Pages: 043123-043123

    • DOI

      10.1103/physrevresearch.3.043123

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Motives with modulus, I: Modulus sheaves with transfers for non-proper modulus pairs2021

    • Author(s)
      Bruno Kahn, Hiroyasu Miyazaki, Shuji Saito, Takao Yamazaki
    • Journal Title

      Epijournal de Geometrie Algebrique

      Volume: 5

    • DOI

      10.46298/epiga.2021.volume5.5979

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Motives with modulus, II: Modulus sheaves with transfers for proper modulus pairs2021

    • Author(s)
      Bruno Kahn, Hiroyasu Miyazaki, Shuji Saito, Takao Yamazaki
    • Journal Title

      Epijournal de Geometrie Algebrique

      Volume: 5

    • DOI

      10.46298/epiga.2021.volume5.5980

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Nisnevich topology with modulus2020

    • Author(s)
      Hiroyasu Miyazaki
    • Journal Title

      Annals of K-theory

      Volume: -

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Topologies on schemes and modulus pairs2020

    • Author(s)
      Bruno Kahn, Hiroyasu Miyazaki
    • Journal Title

      Nagoya Mathematical Journal

      Volume: -

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] On some generalizations of motives with modulus2022

    • Author(s)
      Hiroyasu Miyazaki
    • Organizer
      Motives, quadratic forms and arithmetic
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On reciprocity sheaves and a motivic analogue of the Hasse-Arf theorem2022

    • Author(s)
      Hiroyasu Miyazaki
    • Organizer
      Seminaire de theorie des nombres de l'IMJ-PRG
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 一般底上のモジュラス付きモチーフ理論について2022

    • Author(s)
      宮﨑弘安
    • Organizer
      第21回仙台広島整数論集会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 一般ベース上のモジュラス付きモチーフ理論2022

    • Author(s)
      宮﨑弘安
    • Organizer
      第21回仙台広島整数論集会
    • Related Report
      2021 Research-status Report
  • [Presentation] Recent development of the theory of motives with modulus (tentative)2022

    • Author(s)
      Hiroyasu Miyazaki
    • Organizer
      Motives, quadratic forms and arithmetic
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On a generalization of motives2021

    • Author(s)
      Hiroyasu Miyazaki
    • Organizer
      慶応代数セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] On Nisnevich topology with modulus2020

    • Author(s)
      Hiroyasu Miyazaki
    • Organizer
      Motivic Hopf Equations seminar (オスロ大学・オンライン開催)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On motives with modulus2020

    • Author(s)
      Hiroyasu Miyazaki
    • Organizer
      Mathematics-String theory Seminar, Kavli IPMU
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Homotopy property for algebraic cycles with modulus2019

    • Author(s)
      Hiroyasu Miyazaki
    • Organizer
      Algebraic Geometry Seminar, KAIST, Republic of Korea
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] On algebraic cycles with modulus2019

    • Author(s)
      Hiroyasu Miyazaki
    • Organizer
      Keio University Workshop 2019 (Number Theory), Boston University
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] Researchmap

    • URL

      https://researchmap.jp/hiroyasu_miyazaki

    • Related Report
      2019 Research-status Report

URL: 

Published: 2019-09-03   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi